A322844 a(n) = (1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n mod 2)).
0, 0, 5, 6, 68, 50, 333, 196, 1040, 540, 2525, 1210, 5220, 2366, 9653, 4200, 16448, 6936, 26325, 10830, 40100, 16170, 58685, 23276, 83088, 32500, 114413, 44226, 153860, 58870, 202725, 76880, 262400, 98736, 334373, 124950, 420228, 156066, 521645, 192660, 640400, 235340
Offset: 0
Links
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Wikipedia, Characteristic polynomial
- Wikipedia, Exterior algebra
- Index entries for linear recurrences with constant coefficients, signature (0,5,0,-10,0,10,0,-5,0,1).
Crossrefs
Cf. A317614 (trace of matrix M(n)).
Cf. A002415, A037270, A074147 (antidiagonals of M matrices), A241016 (row sums of M matrices), A317617 (column sums of M matrices), A322277 (permanent of matrix M(n)), A323723 (subdiagonal sum of M matrices), A323724 (superdiagonal sum of M matrices), A325516 (k-superdiagonal sum of M matrices), A325655 (k-subdiagonal sum of M matrices).
Programs
-
GAP
Flat(List([0..50], n->(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n mod 2))));
-
Magma
[IsEven(n) select (1/4)*n^2*(1 + n^2) else (1/12)*(- 1 + n)*n^2*(1 + n): n in [0..50]];
-
Maple
a:=n->(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*modp(n,2)): seq(a(n), n=0..50);
-
Mathematica
a[n_]:=(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*Mod[n,2]); Array[a,50,0] LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{0,0,5,6,68,50,333,196,1040,540},50] (* Harvey P. Dale, Aug 23 2025 *)
-
Maxima
a(n):=(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*mod(n,2))$ makelist(a(n), n, 0, 50);
-
PARI
a(n) = (1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n % 2));
-
PARI
a(n) = abs(polcoeff(charpoly(matrix(n, n, i, j, if (i %2, j + n*(i-1), n*i - j + 1))), n-2)); \\ Michel Marcus, Feb 06 2019
-
Python
[int(n**2*(3*(1 + n**2) - 2*(2 + n**2)*pow(n, 1, 2))/12) for n in range(0,50)]
Formula
O.g.f.: -x^2*(5 + 6*x + 43*x^2 + 20*x^3 + 43*x^4 + 6*x^5 + 5*x^6)/((-1 + x)^5*(1 + x)^5).
E.g.f.: (1/(12*x^2))*exp(-x)*(24 - 60*exp(x) + 21*x + 9*x^2 + 2*x^3 + x^4 + exp(2*x)*(36 - 33*x + 15*x^2 - 4*x^3 + 2*x^4)).
a(n) = (1/4)*n^2*(1 + n^2) for n even.
a(n) = (1/2)*A037270(n) for n even.
a(n) = (1/12)*(-1 + n)*n^2*(1 + n) for n odd.
a(n) = A002415(n) for n odd.
a(2*n+1) = 5*a(2*n-1) - 10*a(2*n-3) + 10*a(2*n-5) - 5*a(2*n-7) + a(2*n-9), for n > 4.
a(2*n) = 5*a(2*n-2) - 10*a(2*n-4) + 10*a(2*n-6) - 5*a(2*n-8) + a(2*n-10), for n > 4.
O.g.f. for a(2*n+1): -x*(2*(3 + 10*x + 3*x^2))/(-1 + x)^5.
O.g.f. for a(2*n): x*(-5 - 43*x - 43*x^2 - 5*x^3)/(-1 + x)^5.
E.g.f. for a(2*n+1): (1/12)*(6*x*cosh(sqrt(x)) + sqrt(x)*(6 + x)*sinh(sqrt(x))).
E.g.f. for a(2*n): (1/4)*(x*(8 + x)*cosh(sqrt(x)) + 2*sqrt(x)*(1 + 3*x)*sinh(sqrt(x))).
Sum_{k>=1} 1/a(2*k) = (1/6)*(12 + Pi^2 - 6*Pi*coth(Pi/2)) = 0.21955691692893092525407699347398665248691900...
Sum_{k>=1} 1/a(2*k+1) = 3*(5 - Pi^2/2) = 0.1955933983659620717482635001857732970...
Sum_{k>=2} 1/a(k) = 17 - (4*Pi^2)/3 - Pi*coth(Pi/2) = 0.415150315294892997002340493659759949516369894...
Comments