cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322888 Chebyshev T-polynomials T_n(16).

Original entry on oeis.org

1, 16, 511, 16336, 522241, 16695376, 533729791, 17062657936, 545471324161, 17438019715216, 557471159562751, 17821639086292816, 569734979601807361, 18213697708171542736, 582268591681887560191, 18614381236112230383376, 595077930963909484707841
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2018

Keywords

Crossrefs

Column 16 of A322836.

Programs

  • GAP
    a:=[1,16];; for n in [3..20] do a[n]:=32*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 31 2018
    
  • Magma
    I:=[1, 16]; [n le 2 select I[n] else 32*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 02 2019
  • Maple
    seq(coeff(series((1-16*x)/(1-32*x+x^2),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 31 2018
  • Mathematica
    Array[ChebyshevT[#, 16] &, 17, 0] (* or *)
    With[{k = 16}, CoefficientList[Series[(1 - k x)/(1 - 2 k x + x^2), {x, 0, 16}], x]] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    {a(n) = polchebyshev(n, 1, 16)}
    
  • PARI
    Vec((1 - 16*x) / (1 - 32*x + x^2) + O(x^20)) \\ Colin Barker, Dec 30 2018
    

Formula

a(0) = 1, a(1) = 16 and a(n) = 32*a(n-1) - a(n-2) for n > 1.
From Colin Barker, Dec 30 2018: (Start)
G.f.: (1 - 16*x) / (1 - 32*x + x^2).
a(n) = ((16+sqrt(255))^(-n) * (1+(16+sqrt(255))^(2*n))) / 2.
(End)