A322904 a(n) = Sum_{k=0..n} binomial(2*n+1,2*k+1)*(n^2-1)^(n-k)*n^(2*k).
1, 1, 181, 38081, 14526601, 8943235489, 8138661470941, 10287228590683393, 17254778510170993681, 37095265466946847758401, 99474891266913130060486021, 325534304813775692747248543681, 1276941308627620432293188401109401, 5914558735952850788377566338591400673
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..193
- Wikipedia, Chebyshev polynomials.
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Magma
[&+[Binomial(2*n+1,2*k+1)*(n^2-1)^(n-k)*n^(2*k): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019
-
Mathematica
a[0] = 1; a[n_] := 1/n ChebyshevT[2n+1, n]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jan 02 2019 *)
-
PARI
{a(n) = sum(k=0, n, binomial(2*n+1, 2*k+1)*(n^2-1)^(n-k)*n^(2*k))}
-
PARI
a(n) = if (n==0, 1, polchebyshev(2*n+1, 1, n)/n); \\ Michel Marcus, Jan 02 2019
Formula
For n > 0, a(n) = (1/n) * T_{2*n+1}(n) where T_{n}(x) is a Chebyshev polynomial of the first kind.
For n > 0, a(n) = (1/n) * cosh((2*n+1)*arccosh(n)).
a(n) ~ 4^n * n^(2*n). - Vaclav Kotesovec, Jan 03 2019