A322909 The permanent of an n X n Toeplitz matrix M(n) whose first row consists of successive positive integer numbers 1, ..., n and whose first column consists of 1, n + 1, ..., 2*n - 1.
1, 1, 7, 100, 2840, 129428, 8613997, 791557152, 95921167710, 14818153059968, 2842735387366627, 663020104070865664, 184757202542187563476, 60623405966739216871680, 23135486197103263598936745, 10160292704659539620791062528, 5087671168376607498331875818106
Offset: 0
Keywords
Examples
For n = 1 the matrix M(1) is 1 with permanent a(1) = 1. For n = 2 the matrix M(2) is 1, 2 3, 1 with permanent a(2) = 7. For n = 3 the matrix M(3) is 1, 2, 3 4, 1, 2 5, 4, 1 with permanent a(3) = 100.
Links
- Stefano Spezia, Table of n, a(n) for n = 0..35
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Maple
with(LinearAlgebra): a:= n-> `if`(n=0, 1, Permanent(ToeplitzMatrix([ seq(i, i=2*n-1..n+1, -1), seq(i, i=1..n)]))): seq(a(n), n = 0 .. 15);
-
Mathematica
b[n_]:=n; a[n_]:=If[n==0,1,Permanent[ToeplitzMatrix[Join[{b[1]}, Array[b, n-1, {n+1, 2*n-1}]], Array[b, n]]]]; Array[a, 15,0]
-
PARI
tm(n) = {my(m = matrix(n, n, i, j, if (i==1, j, if (j==1, n+i-1)))); for (i=2, n, for (j=2, n, m[i, j] = m[i-1, j-1]; ); ); m; } a(n) = matpermanent(tm(n)); \\ Stefano Spezia, Dec 19 2019
Extensions
a(0) = 1 prepended by Stefano Spezia, Dec 19 2019
Comments