cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322938 a(n) = binomial(2*n + 2, n + 2) - 1.

Original entry on oeis.org

0, 3, 14, 55, 209, 791, 3002, 11439, 43757, 167959, 646645, 2496143, 9657699, 37442159, 145422674, 565722719, 2203961429, 8597496599, 33578000609, 131282408399, 513791607419, 2012616400079, 7890371113949, 30957699535775, 121548660036299, 477551179875951
Offset: 0

Views

Author

Peter Luschny, Feb 13 2019

Keywords

Crossrefs

Cf. A001791, A014473, A030662 (d=0), A010763 (d=1), this sequence (d=2).

Programs

  • Magma
    [Binomial(2*n+2,n+2) -1: n in [0..30]]; // G. C. Greubel, Apr 22 2024
    
  • Maple
    aList := proc(len) local gf, ser; assume(Im(x) > 0);
    gf := (2*x^2 - x + 1)/(2*(x - 1)*x^2) - (I*(2*x - 1))/(2*x^2*sqrt(4*x - 1));
    ser := series(gf, x, len+4):
    seq(coeff(ser, x, n), n=0..len) end: lprint(aList(25));
  • Mathematica
    Table[Binomial[2 n + 2, n + 2] - 1, {n, 0, 25}]
  • SageMath
    [binomial(2*n+2,n+2) - 1 for n in range(31)] # G. C. Greubel, Apr 22 2024

Formula

Let G(x) = (2*x^2-x+1)/(2*(x-1)*x^2)-(I*(2*x-1))/(2*x^2*sqrt(4*x-1)) with Im(x) > 0, then a(n) = [x^n] G(x). The generating function G(x) satisfies the differential equation 9*x - 16*x^2 + 4*x^3 = (8*x^5 - 22*x^4 + 21*x^3 - 8*x^2 + x)*diff(G(x), x) + (12*x^4 - 36*x^3 + 38*x^2 - 16*x + 2)*G(x).
From Peter Bala, Feb 25 2022: (Start)
a(n) = Sum_{k = 0..n+1} binomial(n+k,k+1).
a(n) = Sum_{k = 0..n-1} binomial(n+k+2,k+1).
More generally, Sum_{k = 0..n+m} binomial(n+k,k+1) = Sum_{k = 0..n-1} binomial(n+k+m+1,k+1) = binomial(2*n+m+1,n) - 1. (End)
a(n) = A001791(n+1) - 1. - Hugo Pfoertner, Feb 26 2022
a(n) = n/(n+2) * binomial(2*n+2, n+1) * Sum_{k = 0..n+1} 1/binomial(n+k+1, k). - Peter Bala, Aug 05 2025