cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322942 Jacobsthal triangle, coefficients of orthogonal polynomials J(n, x) where J(n, 0) are the Jacobsthal numbers (A001045 with a(0) = 1). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 5, 3, 1, 5, 12, 10, 4, 1, 11, 27, 28, 16, 5, 1, 21, 62, 75, 52, 23, 6, 1, 43, 137, 193, 159, 85, 31, 7, 1, 85, 304, 480, 456, 290, 128, 40, 8, 1, 171, 663, 1170, 1254, 916, 480, 182, 50, 9, 1, 341, 1442, 2793, 3336, 2750, 1652, 742, 248, 61, 10, 1
Offset: 0

Views

Author

Peter Luschny, Jan 03 2019

Keywords

Comments

The name 'Jacobsthal triangle' used here is not standard.

Examples

			The first few polynomials are:
  J(0, x) = 1;
  J(1, x) = x + 1;
  J(2, x) = x^2 + 2*x + 1;
  J(3, x) = x^3 + 3*x^2 +  5*x + 3;
  J(4, x) = x^4 + 4*x^3 + 10*x^2 + 12*x + 5;
  J(5, x) = x^5 + 5*x^4 + 16*x^3 + 28*x^2 + 27*x + 11;
  J(6, x) = x^6 + 6*x^5 + 23*x^4 + 52*x^3 + 75*x^2 + 62*x + 21;
The triangle starts:
  [0]   1;
  [1]   1,   1;
  [2]   1,   2,    1;
  [3]   3,   5,    3,    1;
  [4]   5,  12,   10,    4,   1;
  [5]  11,  27,   28,   16,   5,   1;
  [6]  21,  62,   75,   52,  23,   6,   1;
  [7]  43, 137,  193,  159,  85,  31,   7,  1;
  [8]  85, 304,  480,  456, 290, 128,  40,  8, 1;
  [9] 171, 663, 1170, 1254, 916, 480, 182, 50, 9, 1;
		

Crossrefs

Row sums are A152035, alternating row sums are A000007, values at x=1/2 are A323232, values at x=0 (first column) are A152046.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    g:= func< n,x | (&+[Binomial(n-k,k)*2^k*(x+1)^(n-2*k): k in [0..Floor(n/2)]]) >;
    f:= func< n,x | n le 1 select (x+1)^n else g(n,x) - 2*g(n-2,x) >;
    A322942:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
    [A322942(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 20 2023
  • Maple
    J := proc(n) option remember;
    `if`(n < 3, [1, x+1, x^2 + 2*x + 1][n+1], (x+1)*J(n-1) + 2*J(n-2));
    sort(expand(%)) end: seq(print(J(n)), n=0..11); # Computes the polynomials.
    seq(seq(coeff(J(n), x, k), k=0..n), n=0..11);
  • Mathematica
    J[n_, x_]:= J[n, x]= If[n<3, (x+1)^n, (x+1)*J[n-1, x] + 2*J[n-2, x]];
    T[n_, k_]:= Coefficient[J[n, x], x, k];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 17 2019 *)
    (* Second program *)
    A322942[n_, k_]:= Coefficient[Series[Boole[n==0] + (I*Sqrt[2])^n*(ChebyshevU[n, (x+1)/(2*Sqrt[2]*I)] + ChebyshevU[n-2, (x+ 1)/(2*Sqrt[2]*I)]), {x,0,50}], x, k];
    Table[A322942[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
  • Sage
    # use[riordan_square from A321620]
    riordan_square((2*x^2 - 1)/((x + 1)*(2*x - 1)), 9)
    

Formula

J(n, x) = (x+1)*J(n-1, x) + 2*J(n-2, x) for n >= 3.
T(n, k) = [x^k] J(n, x).
Equals the Riordan square (cf. A321620) generated by (2*x^2-1)/((x + 1)*(2*x - 1)).
Sum_{k=0..n} T(n, k) = A152035(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
From G. C. Greubel, Sep 20 2023: (Start)
T(n, k) = [x^k]( [n=0] + (i*sqrt(2))^n*(ChebyshevU(n, (x+1)/(2*sqrt(2)*i)) + ChebyshevU(n-2, (x+1)/(2*sqrt(2)*i))) ).
G.f.: (1 - 2*t^2)/(1 - (x+1)*t - 2*t^2).
Sum_{k=0..floor(n/2)} T(n-k, k) = (2/3)*[n=0] + A006138(n-1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = 2*[n=0] + Fibonacci(n-2). (End)