cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A323232 a(n) = 2^n*J(n, 1/2) where J(n, x) are the Jacobsthal polynomials as defined in A322942.

Original entry on oeis.org

1, 3, 9, 51, 225, 1083, 5049, 23811, 111825, 525963, 2472489, 11625171, 54655425, 256967643, 1208146329, 5680180131, 26705711025, 125558574123, 590321410569, 2775432824691, 13048869758625, 61350071873403, 288441173689209, 1356124096054851, 6375901677678225
Offset: 0

Views

Author

Peter Luschny, Jan 07 2019

Keywords

Comments

Is it true that p prime and p not 2 or 5 implies that a(p) is squarefree?

Examples

			The first few prime factorizations of a(n):
   1| 3;
   2| 3^2;
   3| 3   * 17;
   4| 3^2 * 5^2;
   5| 3   * 19^2;
   6| 3^3 * 11 * 17;
   7| 3   * 7937;
   8| 3^2 * 5^2 * 7 * 71;
   9| 3   * 17 * 10313;
  10| 3^2 * 19^2 * 761;
  11| 3   * 3875057;
  12| 3^3 * 5^2 * 11 * 17 * 433;
  13| 3   * 85655881;
  14| 3^2 * 13 * 1301 * 7937;
  15| 3   * 17 * 19^2 * 308521;
  16| 3^2 * 5^2 * 7 * 71 * 79 * 3023;
  17| 3   * 67 * 624669523;
  18| 3^4 * 11 * 17 * 3779 * 10313;
  19| 3   * 419 * 2207981563;
		

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 3^n else 3*Self(n-1) +8*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 27 2021
  • Maple
    a := proc(n) option remember:
        if n < 3 then return [1, 3, 9][n+1] fi;
        8*a(n-2) + 3*a(n-1) end:
    seq(a(n), n=0..24);
  • Mathematica
    LinearRecurrence[{3, 8}, {1, 3, 9}, 25]
  • Sage
    def a():
        yield 1
        yield 3
        c = 3; b = 9
        while True:
            yield b
            a = (b << 2) + (c << 3) - b
            c = b
            b = a
    A323232 = a()
    [next(A323232) for _ in range(30)]
    

Formula

a(n) = 3*a(n-1) + 8*a(n-2) for n >= 3.
a(n) is an odd integer and 3 | a(n) if n > 0.
a(n) = Sum_{k=0..n} 2^(n - k)*A322942(n, k).
a(n) = [x^n] (8*x^2 - 1)/(8*x^2 + 3*x - 1).
Let s = sqrt(41), u = -1/(s+3) and v = 1/(s-3); then
a(n) = (3/s)*16^n*(v^n - u^n) for n >= 1.
a(n) = n! [x^n](1 + (6*exp(3*x/2)*sinh(s*x/2))/s).
a(n) = n! [x^n](1 + (3/s)*(exp((3 + s)*x/2) - exp((3 - s)*x/2))).
a(n)/a(n+1) -> 2/(sqrt(41) + 3) = (sqrt(41) - 3)/16 for n -> oo.

A330794 Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 1, -3, 1, 1, 4, 2, -4, 1, -1, -7, 10, 4, -5, 1, 1, -14, -25, 16, 7, -6, 1, -1, 65, -21, -55, 21, 11, -7, 1, 1, -24, 196, -8, -98, 24, 16, -8, 1, -1, -367, -204, 400, 42, -154, 24, 22, -9, 1, 1, 774, -963, -688, 666, 148, -222, 20, 29, -10, 1
Offset: 0

Views

Author

Peter Luschny, Jan 03 2020

Keywords

Comments

The inverse matrix of the Riordan square (cf. A321620) generated by (1 - 2*x^2)/((1 + x)*(1 - 2*x)).

Examples

			Triangle starts:
[0]   1;
[1]  -1,    1;
[2]   1,   -2,    1;
[3]  -1,    1,   -3,    1;
[4]   1,    4,    2,   -4,    1;
[5]  -1,   -7,   10,    4,   -5,    1;
[6]   1,  -14,  -25,   16,    7,   -6,    1;
[7]  -1,   65,  -21,  -55,   21,   11,   -7,    1;
[8]   1,  -24,  196,   -8,  -98,   24,   16,   -8,    1;
[9]  -1, -367, -204,  400,   42, -154,   24,   22,   -9,    1;
		

Crossrefs

Programs

  • Mathematica
    m=30;
    A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x,0,m}, {t,0,m}], t], x];
    M:= M= Table[If[k<=n, A322942[[n+1,k+1]], 0], {n,0,m}, {k,0,m}];
    g:= g= Inverse[M];
    A330794[n_, k_]:= g[[n+1,k+1]];
    Table[A330794[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
  • Sage
    # uses[riordan_array from A256893]
    Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1))
    riordan_array(Jacobsthal, Jacobsthal, 10).inverse()

Formula

From G. C. Greubel, Sep 15 2023: (Start)
T(n, 0) = (-1)^n.
T(n, n) = 1.
T(n, n-1) = -n.
T(n, n-2) = A152947(n-1). (End)

A321620 The Riordan square of the Riordan numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 6, 13, 10, 7, 4, 1, 1, 15, 29, 26, 16, 9, 5, 1, 1, 36, 73, 61, 42, 23, 11, 6, 1, 1, 91, 181, 157, 103, 61, 31, 13, 7, 1, 1, 232, 465, 398, 271, 156, 83, 40, 15, 8, 1, 1, 603, 1205, 1040, 702, 419, 221, 108, 50, 17, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Nov 15 2018

Keywords

Comments

If gf is a generating function of the sequence a then by the 'Riordan square of a' we understand the integer triangle given by the Riordan array (gf, gf). This mapping can be seen as an operator RS: Z[[x]] -> Mat[Z].
For instance A039599 is the Riordan square of the Catalan numbers, A172094 is the Riordan square of the little Schröder numbers and A063967 is the Riordan square of the Fibonacci numbers. The Riordan square of the simplest sequence of positive numbers (A000012) is the Pascal triangle.
The generating functions used are listed in the table below. They may differ slightly from those defined elsewhere in order to ensure that RS(a) is invertible (as a matrix). We understand this as a kind of normalization.
---------------------------------------------------------------------------
Sequence a | RS(a) | gf(a)
---------------------------------------------------------------------------
Catalan | A039599 | (1 - sqrt(1 - 4*x))/(2*x).
1, Riordan | A321620 | 1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)).
Motzkin | A321621 | (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2).
Fine | A321622 | 1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)).
large Schröder | A321623 | (1 - x - sqrt(1 - 6*x + x^2))/(2*x).
little Schröder | A172094 | (1 + x - sqrt(1 - 6*x + x^2))/(4*x).
Lucas | A321624 | 1 + x*(1 + 2*x)/(1 - x - x^2).
swinging factorial | A321625 | (1 + x/(1 - 4*x^2))/sqrt(1 - 4*x^2).
ternary trees ||A109956|| u = sqrt(x*3/4); sin(arcsin(3*u)/3)/u.
central trinomial | A116392 | 1/sqrt(1 - 2*x - 3*x^2)
Bell | A154380 | Sum_{k>=0} x^k/Product_{j=1..k}(1 - j*x).
(2*n-1)!! | A321627 | 1/(1-x/(1-2*x/(1-3*x/(1-4*x/(1-5*x/...
powers of 2 | A038208 | 1/(1 - 2*x).
the all 1's seq. | A007318 | 1/(1 - x).
Fibonacci | A063967 | 1/(1 - x - x^2).
tribonacci | A187889 | 1/(1 - x - x^2 - x^3).
tetranacci | A353593 | 1/(1 - x - x^2 - x^3 - x^4).
Jacobsthal | A322942 | (2*x^2-1)/((x + 1)*(2*x - 1))

Examples

			The triangle starts:
   [ 0]   1
   [ 1]   1    1
   [ 2]   0    1    1
   [ 3]   1    1    1   1
   [ 4]   1    3    2   1   1
   [ 5]   3    5    5   3   1   1
   [ 6]   6   13   10   7   4   1   1
   [ 7]  15   29   26  16   9   5   1  1
   [ 8]  36   73   61  42  23  11   6  1  1
   [ 9]  91  181  157 103  61  31  13  7  1 1
   [10] 232  465  398 271 156  83  40 15  8 1 1
		

Crossrefs

Programs

  • Maple
    RiordanSquare := proc(d, n, exp:=false) local td, M, k, m, u, j;
        series(d, x, n+1); td := [seq(coeff(%, x, j), j = 0..n)];
        M := Matrix(n); for k from 1 to n do M[k, 1] := td[k] od;
        for k from 1 to n-1 do for m from k to n-1 do
           M[m+1, k+1] := add(M[j, k]*td[m-j+2], j = k..m) od od;
        if exp then u := 1;
           for k from 1 to n-1 do u := u * k;
              for m from 1 to k do j := `if`(m = 1, u, j/(m-1));
                 M[k+1, m] := M[k+1, m] * j od od fi;
    M end:
    RiordanSquare(1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)), 8);
  • Mathematica
    RiordanSquare[gf_, len_] := Module[{T}, T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[gf, {x, 0, n}], Sum[T[j, k-1] T[n-j, 0], {j, k-1, n-1}]]; Table[T[n, k], {n, 0, len-1}, {k, 0, n}]];
    M = RiordanSquare[1 + 2x/(1 + x + Sqrt[1 - 2x - 3x^2]), 12];
    M // Flatten (* Jean-François Alcover, Nov 24 2018 *)
  • Sage
    # uses[riordan_array from A256893]
    def riordan_square(gf, len, exp=false):
        return riordan_array(gf, gf, len, exp)
    riordan_square(1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)), 10)
    # Alternatively, given a list S:
    def riordan_square_array(S):
        N = len(S)
        M = matrix(ZZ, N, N)
        for n in (0..N-1): M[n, 0] = S[n]
        for k in (1..N-1):
            for m in (k..N-1):
                M[m, k] = sum(M[j, k-1]*S[m-j] for j in (k-1..m-1))
        return M
    riordan_square_array([1, 1, 0, 1, 1, 3, 6, 15, 36]) # Peter Luschny, Apr 03 2020

Formula

Given a generating function g and an positive integer N compute the Taylor expansion at the origin t(k) = [x^k] g(x) for k in [0...N-1] and set T(n, 0) = t(n) for n in [0...N-1]. Then compute T(m, k) = Sum_{j in [k-1...m-1]} T(j, k - 1) t(m - j) for k in [1...N-1] and for m in [k...N-1]. The resulting (0, 0)-based lower triangular array is the Riordan square generated by g.

A152035 Expansion of g.f. (1-2*x^2)/(1-2*x-2*x^2).

Original entry on oeis.org

1, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432, 2627929735168, 7179637555200, 19615134580736
Offset: 0

Views

Author

Roger L. Bagula, Nov 20 2008

Keywords

Comments

Essentially same as A028860. - Philippe Deléham, Sep 21 2009

Crossrefs

Cf. A028860. Row sums of A322942.

Programs

  • Magma
    [1] cat [n le 2 select 2^n else 2*(Self(n-1) +Self(n-2)): n in [1..30]]; // G. C. Greubel, Sep 20 2023
    
  • Maple
    a := proc(n) option remember;
    `if`(n < 3, [1, 2, 4][n+1], 2*(a(n-1) + a(n-2))) end:
    seq(a(n), n=0..31); # Peter Luschny, Jan 03 2019
  • Mathematica
    f[n_] = 2^n*Product[(1 + 2*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}]
    CoefficientList[Series[(1-2x^2)/(1-2x-2x^2),{x,0,40}],x] (* Harvey P. Dale, Sep 23 2014 *)
    LinearRecurrence[{2,2},{1,2,4},40] (* Harvey P. Dale, May 12 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A152035
        if n<3: return (1,2,4)[n]
        else: return 2*(a(n-1) + a(n-2))
    [a(n) for n in range(31)] # G. C. Greubel, Sep 20 2023

Formula

a(n) = 2*(a(n-1) + a(n-2)) for n >= 3. - Peter Luschny, Jan 03 2019

Extensions

Edited by N. J. A. Sloane, Apr 11 2009, based on comments from Philippe Deléham and R. J. Mathar
More terms from Philippe Deléham, Sep 21 2009

A331319 a(n) = [x^n](x - 2*x^3)/(1 - 2*x*(x + 1))^2.

Original entry on oeis.org

0, 1, 4, 14, 48, 156, 496, 1544, 4736, 14352, 43072, 128224, 379136, 1114560, 3260160, 9494656, 27545600, 79642880, 229573632, 659951104, 1892478976, 5414755328, 15461117952, 44064835584, 125371383808, 356137570304, 1010187124736, 2861518086144, 8095486246912
Offset: 0

Views

Author

Peter Luschny, Jan 14 2020

Keywords

Crossrefs

Cf. A322942 (Jacobsthal triangle), A331320, A331321.

Programs

  • Maple
    gf := (x - 2*x^3)/(1 - 2*x*(x + 1))^2: ser := series(gf, x, 32):
    seq(coeff(ser, x, n), n=0..28);
  • Mathematica
    LinearRecurrence[ {4, 0, -8, -4}, {0, 1, 4, 14}, 28]
  • PARI
    concat(0, Vec(x*(1 - 2*x^2) / (1 - 2*x - 2*x^2)^2 + O(x^30))) \\ Colin Barker, Jan 14 2020

Formula

a(n) = Sum_{k=0..n} A322942(n, k)*k.
a(n) = 2*((n^2 - n - 2)*a(n-2) + (n^2 - 2*n - 4)*a(n-1))/(n^2 - 3*n).
a(n) = n! [x^n] (1/9)*exp(x)*(sqrt(3)*(3*x+2)*sinh(sqrt(3)*x)+3*x*cosh(sqrt(3)*x)).
From Colin Barker, Jan 14 2020: (Start)
a(n) = ((1-sqrt(3))^n*(-2*sqrt(3) + 3*n) + (1+sqrt(3))^n*(2*sqrt(3) + 3*n)) / 18.
a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4) for n>3.
(End)

A331320 a(n) = [x^n] ((x + 1)*(2*x - 1)*(2*x^2 - 1))/(2*x^2 + 2*x - 1)^2.

Original entry on oeis.org

1, 3, 8, 26, 80, 244, 736, 2200, 6528, 19248, 56448, 164768, 478976, 1387328, 4005376, 11530624, 33107968, 94839552, 271091712, 773380608, 2202374144, 6261404672, 17774206976, 50384312320, 142636515328, 403306786816, 1139055820800, 3213593911296, 9057375289344
Offset: 0

Views

Author

Peter Luschny, Jan 14 2020

Keywords

Crossrefs

Cf. A322942 (Jacobsthal triangle), A331319, A331321.

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then return [1, 3, 8][n+1] fi;
    (12*(n - 3)*a(n-3) + (14*n - 6)*a(n-2) + (70 - 4*n)*a(n-1))/(n+19) end:
    seq(a(n), n=0..28);
    # Alternative:
    gf := ((x + 1)*(2*x - 1)*(2*x^2 - 1))/(2*x^2 + 2*x - 1)^2:
    ser := series(gf, x, 32): seq(coeff(ser, x, n), n=0..28);
  • Mathematica
    LinearRecurrence[{4,0,-8,-4},{1,3,8,26,80},40] (* Harvey P. Dale, Jun 14 2025 *)
  • PARI
    Vec((1 + x)*(1 - 2*x)*(1 - 2*x^2) / (1 - 2*x - 2*x^2)^2 + O(x^30)) \\ Colin Barker, Jan 14 2020

Formula

a(n) = Sum_{k=0..n} A322942(n,k)*(k+1).
a(n) = (12*(n - 3)*a(n-3) + (14*n - 6)*a(n-2) + (70 - 4*n)*a(n-1))/(n + 19).
Let h(k) = (1+k)*exp((1+k)*x)*(3*x+12-4*k)/18 then
a(n) = n!*[x^n](h(sqrt(3)) + h(-sqrt(3)) + 1).
From Colin Barker, Jan 14 2020: (Start)
a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4) for n>4.
a(n) = (-8*sqrt(3)*((1-sqrt(3))^n - (1+sqrt(3))^n) + 3*((1-sqrt(3))^n + (1+sqrt(3))^n)*n) / 18 for n>0.
(End)

A322941 Coefficients of orthogonal polynomials p(n, x) where p(n, 0) is A026150 with 1 prepended. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 7, 4, 1, 10, 22, 17, 6, 1, 28, 68, 64, 31, 8, 1, 76, 208, 230, 138, 49, 10, 1, 208, 628, 796, 568, 252, 71, 12, 1, 568, 1880, 2680, 2208, 1170, 414, 97, 14, 1, 1552, 5584, 8832, 8232, 5052, 2140, 632, 127, 16, 1, 4240, 16480, 28608, 29712, 20676, 10160, 3598, 914, 161, 18, 1
Offset: 0

Views

Author

Peter Luschny, Jan 06 2019

Keywords

Examples

			The first few polynomials are:
[0] p(0, x) = 1;
[1] p(1, x) = x + 1;
[2] p(2, x) = x^2 +  2*x + 1;
[3] p(3, x) = x^3 +  4*x^2 +  7*x + 4;
[4] p(4, x) = x^4 +  6*x^3 + 17*x^2 +  22*x + 10;
[5] p(5, x) = x^5 +  8*x^4 + 31*x^3 +  64*x^2 +  68*x + 28;
[6] p(6, x) = x^6 + 10*x^5 + 49*x^4 + 138*x^3 + 230*x^2 + 208*x + 76;
The triangle starts:
[0]    1;
[1]    1,    1;
[2]    1,    2,    1;
[3]    4,    7,    4,    1;
[4]   10,   22,   17,    6,    1;
[5]   28,   68,   64,   31,    8,    1;
[6]   76,  208,  230,  138,   49,   10,   1;
[7]  208,  628,  796,  568,  252,   71,  12,   1;
[8]  568, 1880, 2680, 2208, 1170,  414,  97,  14,  1;
[9] 1552, 5584, 8832, 8232, 5052, 2140, 632, 127, 16, 1;
		

Crossrefs

Row sums are A322940, alternating row sums are A000007.

Programs

  • Maple
    p := proc(n) option remember;
    `if`(n < 3, [1, x+1, x^2 + 2*x + 1][n+1], (x+2)*p(n-1) + 2*p(n-2));
    sort(expand(%)) end: seq(print(p(n)), n=0..11); # Computes the polynomials.
    seq(seq(coeff(p(n), x, k), k=0..n), n=0..10);

Formula

p(n, x) = (x+2)*p(n-1, x) + 2*p(n-2, x) for n >= 3.
T(n, k) = [x^k] p(n, x).

A329918 Coefficients of orthogonal polynomials related to the Jacobsthal numbers A152046, triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 4, 0, 1, 0, 4, 0, 6, 0, 1, 0, 0, 12, 0, 8, 0, 1, 0, 8, 0, 24, 0, 10, 0, 1, 0, 0, 32, 0, 40, 0, 12, 0, 1, 0, 16, 0, 80, 0, 60, 0, 14, 0, 1, 0, 0, 80, 0, 160, 0, 84, 0, 16, 0, 1, 0, 32, 0, 240, 0, 280, 0, 112, 0, 18, 0, 1
Offset: 0

Views

Author

Peter Luschny, Nov 28 2019

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 0,  1;
  [2] 0,  0,  1;
  [3] 0,  2,  0,  1;
  [4] 0,  0,  4,  0,  1;
  [5] 0,  4,  0,  6,  0,  1;
  [6] 0,  0, 12,  0,  8,  0,  1;
  [7] 0,  8,  0, 24,  0, 10,  0,  1;
  [8] 0,  0, 32,  0, 40,  0, 12,  0, 1;
  [9] 0, 16,  0, 80,  0, 60,  0, 14, 0, 1;
The first few polynomials:
  p(0,x) = 1;
  p(1,x) = x;
  p(2,x) = x^2;
  p(3,x) = 2*x + x^3;
  p(4,x) = 4*x^2 + x^4;
  p(5,x) = 4*x + 6*x^3 + x^5;
  p(6,x) = 12*x^2 + 8*x^4 + x^6;
		

Crossrefs

Row sums are A001045 starting with 1, which is A152046. These are in signed form also the alternating row sums. Diagonal sums are aerated A133494.

Programs

  • Julia
    using Nemo # Returns row n.
    function A329918(row)
        R, x = PolynomialRing(ZZ, "x")
        function p(n)
            n < 3 && return x^n
            x*p(n-1) + 2*p(n-2)
        end
        p = p(row)
        [coeff(p, k) for k in 0:row]
    end
    for row in 0:9 println(A329918(row)) end # prints triangle
  • Maple
    T := (n, k) -> `if`((n+k)::odd, 0, 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2)):
    seq(seq(T(n, k), k=0..n), n=0..11);

Formula

p(n) = x*p(n-1) + 2*p(n-2) for n >= 3; p(0) = 1, p(1) = x, p(2) = x^2.
T(n, k) = [x^k] p(n).
T(n, k) = 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2) if n+k is even otherwise 0.

A323210 a(n) = 9*J(n)^2 where J(n) are the Jacobsthal numbers A001045 with J(0) = 1.

Original entry on oeis.org

1, 9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529, 4198401, 16769025, 67125249, 268402689, 1073807361, 4294836225, 17180131329, 68718952449, 274878955521, 1099509530625, 4398050705409, 17592177655809, 70368760954881, 281474943156225, 1125899973951489
Offset: 0

Views

Author

Peter Luschny, Jan 09 2019

Keywords

Comments

Colin Barker conjectures that A208556 is a shifted version of this sequence.

Crossrefs

Programs

  • Maple
    gf := (8*x^3 - 24*x^2 + 6*x + 1)/((4*x - 1)*(2*x + 1)*(x - 1)):
    ser := series(gf,x,32): seq(coeff(ser,x,n), n=0..25);
  • Mathematica
    LinearRecurrence[{3, 6, -8}, {1, 9, 9, 81}, 25]
  • Sage
    # Demonstrates the product formula.
    CC = ComplexField(200)
    def t(n,k): return CC(3)*cos(CC(pi*k/n)) - CC(i)*sin(CC(pi*k/n))
    def T(n,k): return t(n,k)*(t(n,k).conjugate())
    def a(n): return prod(T(n,k) for k in (1..n))
    print([a(n).real().round() for n in (0..29)])

Formula

a(n) = Product_{k=1..n} T(n, k) where T(n, k) = t(n,k)*conjugate(t(n,k)) and t(n,k) = 3*cos(Pi*k/n) - i*sin(Pi*k/n), i is the imaginary unit.
a(n) = [x^n] (8*x^3 - 24*x^2 + 6*x + 1)/((4*x - 1)*(2*x + 1)*(x - 1)).
a(n) = n! [x^n] (1 + exp(x) - 2*exp(-2*x) + exp(4*x)).
a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3) for n >= 4.
A062510(n) = sqrt(a(n)) for n > 0.
a(n) = 4^n-2*(-2)^n+1, n>0. - R. J. Mathar, Mar 06 2022
Showing 1-9 of 9 results.