A323232
a(n) = 2^n*J(n, 1/2) where J(n, x) are the Jacobsthal polynomials as defined in A322942.
Original entry on oeis.org
1, 3, 9, 51, 225, 1083, 5049, 23811, 111825, 525963, 2472489, 11625171, 54655425, 256967643, 1208146329, 5680180131, 26705711025, 125558574123, 590321410569, 2775432824691, 13048869758625, 61350071873403, 288441173689209, 1356124096054851, 6375901677678225
Offset: 0
The first few prime factorizations of a(n):
1| 3;
2| 3^2;
3| 3 * 17;
4| 3^2 * 5^2;
5| 3 * 19^2;
6| 3^3 * 11 * 17;
7| 3 * 7937;
8| 3^2 * 5^2 * 7 * 71;
9| 3 * 17 * 10313;
10| 3^2 * 19^2 * 761;
11| 3 * 3875057;
12| 3^3 * 5^2 * 11 * 17 * 433;
13| 3 * 85655881;
14| 3^2 * 13 * 1301 * 7937;
15| 3 * 17 * 19^2 * 308521;
16| 3^2 * 5^2 * 7 * 71 * 79 * 3023;
17| 3 * 67 * 624669523;
18| 3^4 * 11 * 17 * 3779 * 10313;
19| 3 * 419 * 2207981563;
-
[1] cat [n le 2 select 3^n else 3*Self(n-1) +8*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 27 2021
-
a := proc(n) option remember:
if n < 3 then return [1, 3, 9][n+1] fi;
8*a(n-2) + 3*a(n-1) end:
seq(a(n), n=0..24);
-
LinearRecurrence[{3, 8}, {1, 3, 9}, 25]
-
def a():
yield 1
yield 3
c = 3; b = 9
while True:
yield b
a = (b << 2) + (c << 3) - b
c = b
b = a
A323232 = a()
[next(A323232) for _ in range(30)]
A330794
Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, -1, 1, 1, -2, 1, -1, 1, -3, 1, 1, 4, 2, -4, 1, -1, -7, 10, 4, -5, 1, 1, -14, -25, 16, 7, -6, 1, -1, 65, -21, -55, 21, 11, -7, 1, 1, -24, 196, -8, -98, 24, 16, -8, 1, -1, -367, -204, 400, 42, -154, 24, 22, -9, 1, 1, 774, -963, -688, 666, 148, -222, 20, 29, -10, 1
Offset: 0
Triangle starts:
[0] 1;
[1] -1, 1;
[2] 1, -2, 1;
[3] -1, 1, -3, 1;
[4] 1, 4, 2, -4, 1;
[5] -1, -7, 10, 4, -5, 1;
[6] 1, -14, -25, 16, 7, -6, 1;
[7] -1, 65, -21, -55, 21, 11, -7, 1;
[8] 1, -24, 196, -8, -98, 24, 16, -8, 1;
[9] -1, -367, -204, 400, 42, -154, 24, 22, -9, 1;
-
m=30;
A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x,0,m}, {t,0,m}], t], x];
M:= M= Table[If[k<=n, A322942[[n+1,k+1]], 0], {n,0,m}, {k,0,m}];
g:= g= Inverse[M];
A330794[n_, k_]:= g[[n+1,k+1]];
Table[A330794[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
-
# uses[riordan_array from A256893]
Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1))
riordan_array(Jacobsthal, Jacobsthal, 10).inverse()
A321620
The Riordan square of the Riordan numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 6, 13, 10, 7, 4, 1, 1, 15, 29, 26, 16, 9, 5, 1, 1, 36, 73, 61, 42, 23, 11, 6, 1, 1, 91, 181, 157, 103, 61, 31, 13, 7, 1, 1, 232, 465, 398, 271, 156, 83, 40, 15, 8, 1, 1, 603, 1205, 1040, 702, 419, 221, 108, 50, 17, 9, 1, 1
Offset: 0
The triangle starts:
[ 0] 1
[ 1] 1 1
[ 2] 0 1 1
[ 3] 1 1 1 1
[ 4] 1 3 2 1 1
[ 5] 3 5 5 3 1 1
[ 6] 6 13 10 7 4 1 1
[ 7] 15 29 26 16 9 5 1 1
[ 8] 36 73 61 42 23 11 6 1 1
[ 9] 91 181 157 103 61 31 13 7 1 1
[10] 232 465 398 271 156 83 40 15 8 1 1
Cf.
A039599,
A321621,
A321622,
A321624,
A172094,
A321623,
A321624,
A321625,
A109956,
A154380,
A038208,
A007318,
A063967,
A187889,
A321629,
A322942,
A236376.
-
RiordanSquare := proc(d, n, exp:=false) local td, M, k, m, u, j;
series(d, x, n+1); td := [seq(coeff(%, x, j), j = 0..n)];
M := Matrix(n); for k from 1 to n do M[k, 1] := td[k] od;
for k from 1 to n-1 do for m from k to n-1 do
M[m+1, k+1] := add(M[j, k]*td[m-j+2], j = k..m) od od;
if exp then u := 1;
for k from 1 to n-1 do u := u * k;
for m from 1 to k do j := `if`(m = 1, u, j/(m-1));
M[k+1, m] := M[k+1, m] * j od od fi;
M end:
RiordanSquare(1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)), 8);
-
RiordanSquare[gf_, len_] := Module[{T}, T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[gf, {x, 0, n}], Sum[T[j, k-1] T[n-j, 0], {j, k-1, n-1}]]; Table[T[n, k], {n, 0, len-1}, {k, 0, n}]];
M = RiordanSquare[1 + 2x/(1 + x + Sqrt[1 - 2x - 3x^2]), 12];
M // Flatten (* Jean-François Alcover, Nov 24 2018 *)
-
# uses[riordan_array from A256893]
def riordan_square(gf, len, exp=false):
return riordan_array(gf, gf, len, exp)
riordan_square(1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)), 10)
# Alternatively, given a list S:
def riordan_square_array(S):
N = len(S)
M = matrix(ZZ, N, N)
for n in (0..N-1): M[n, 0] = S[n]
for k in (1..N-1):
for m in (k..N-1):
M[m, k] = sum(M[j, k-1]*S[m-j] for j in (k-1..m-1))
return M
riordan_square_array([1, 1, 0, 1, 1, 3, 6, 15, 36]) # Peter Luschny, Apr 03 2020
A152035
Expansion of g.f. (1-2*x^2)/(1-2*x-2*x^2).
Original entry on oeis.org
1, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432, 2627929735168, 7179637555200, 19615134580736
Offset: 0
-
[1] cat [n le 2 select 2^n else 2*(Self(n-1) +Self(n-2)): n in [1..30]]; // G. C. Greubel, Sep 20 2023
-
a := proc(n) option remember;
`if`(n < 3, [1, 2, 4][n+1], 2*(a(n-1) + a(n-2))) end:
seq(a(n), n=0..31); # Peter Luschny, Jan 03 2019
-
f[n_] = 2^n*Product[(1 + 2*Cos[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 15}]
CoefficientList[Series[(1-2x^2)/(1-2x-2x^2),{x,0,40}],x] (* Harvey P. Dale, Sep 23 2014 *)
LinearRecurrence[{2,2},{1,2,4},40] (* Harvey P. Dale, May 12 2023 *)
-
@CachedFunction
def a(n): # a = A152035
if n<3: return (1,2,4)[n]
else: return 2*(a(n-1) + a(n-2))
[a(n) for n in range(31)] # G. C. Greubel, Sep 20 2023
A331319
a(n) = [x^n](x - 2*x^3)/(1 - 2*x*(x + 1))^2.
Original entry on oeis.org
0, 1, 4, 14, 48, 156, 496, 1544, 4736, 14352, 43072, 128224, 379136, 1114560, 3260160, 9494656, 27545600, 79642880, 229573632, 659951104, 1892478976, 5414755328, 15461117952, 44064835584, 125371383808, 356137570304, 1010187124736, 2861518086144, 8095486246912
Offset: 0
-
gf := (x - 2*x^3)/(1 - 2*x*(x + 1))^2: ser := series(gf, x, 32):
seq(coeff(ser, x, n), n=0..28);
-
LinearRecurrence[ {4, 0, -8, -4}, {0, 1, 4, 14}, 28]
-
concat(0, Vec(x*(1 - 2*x^2) / (1 - 2*x - 2*x^2)^2 + O(x^30))) \\ Colin Barker, Jan 14 2020
A331320
a(n) = [x^n] ((x + 1)*(2*x - 1)*(2*x^2 - 1))/(2*x^2 + 2*x - 1)^2.
Original entry on oeis.org
1, 3, 8, 26, 80, 244, 736, 2200, 6528, 19248, 56448, 164768, 478976, 1387328, 4005376, 11530624, 33107968, 94839552, 271091712, 773380608, 2202374144, 6261404672, 17774206976, 50384312320, 142636515328, 403306786816, 1139055820800, 3213593911296, 9057375289344
Offset: 0
-
a := proc(n) option remember; if n < 3 then return [1, 3, 8][n+1] fi;
(12*(n - 3)*a(n-3) + (14*n - 6)*a(n-2) + (70 - 4*n)*a(n-1))/(n+19) end:
seq(a(n), n=0..28);
# Alternative:
gf := ((x + 1)*(2*x - 1)*(2*x^2 - 1))/(2*x^2 + 2*x - 1)^2:
ser := series(gf, x, 32): seq(coeff(ser, x, n), n=0..28);
-
LinearRecurrence[{4,0,-8,-4},{1,3,8,26,80},40] (* Harvey P. Dale, Jun 14 2025 *)
-
Vec((1 + x)*(1 - 2*x)*(1 - 2*x^2) / (1 - 2*x - 2*x^2)^2 + O(x^30)) \\ Colin Barker, Jan 14 2020
A322941
Coefficients of orthogonal polynomials p(n, x) where p(n, 0) is A026150 with 1 prepended. Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 7, 4, 1, 10, 22, 17, 6, 1, 28, 68, 64, 31, 8, 1, 76, 208, 230, 138, 49, 10, 1, 208, 628, 796, 568, 252, 71, 12, 1, 568, 1880, 2680, 2208, 1170, 414, 97, 14, 1, 1552, 5584, 8832, 8232, 5052, 2140, 632, 127, 16, 1, 4240, 16480, 28608, 29712, 20676, 10160, 3598, 914, 161, 18, 1
Offset: 0
The first few polynomials are:
[0] p(0, x) = 1;
[1] p(1, x) = x + 1;
[2] p(2, x) = x^2 + 2*x + 1;
[3] p(3, x) = x^3 + 4*x^2 + 7*x + 4;
[4] p(4, x) = x^4 + 6*x^3 + 17*x^2 + 22*x + 10;
[5] p(5, x) = x^5 + 8*x^4 + 31*x^3 + 64*x^2 + 68*x + 28;
[6] p(6, x) = x^6 + 10*x^5 + 49*x^4 + 138*x^3 + 230*x^2 + 208*x + 76;
The triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 4, 7, 4, 1;
[4] 10, 22, 17, 6, 1;
[5] 28, 68, 64, 31, 8, 1;
[6] 76, 208, 230, 138, 49, 10, 1;
[7] 208, 628, 796, 568, 252, 71, 12, 1;
[8] 568, 1880, 2680, 2208, 1170, 414, 97, 14, 1;
[9] 1552, 5584, 8832, 8232, 5052, 2140, 632, 127, 16, 1;
-
p := proc(n) option remember;
`if`(n < 3, [1, x+1, x^2 + 2*x + 1][n+1], (x+2)*p(n-1) + 2*p(n-2));
sort(expand(%)) end: seq(print(p(n)), n=0..11); # Computes the polynomials.
seq(seq(coeff(p(n), x, k), k=0..n), n=0..10);
A329918
Coefficients of orthogonal polynomials related to the Jacobsthal numbers A152046, triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 4, 0, 1, 0, 4, 0, 6, 0, 1, 0, 0, 12, 0, 8, 0, 1, 0, 8, 0, 24, 0, 10, 0, 1, 0, 0, 32, 0, 40, 0, 12, 0, 1, 0, 16, 0, 80, 0, 60, 0, 14, 0, 1, 0, 0, 80, 0, 160, 0, 84, 0, 16, 0, 1, 0, 32, 0, 240, 0, 280, 0, 112, 0, 18, 0, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, 2, 0, 1;
[4] 0, 0, 4, 0, 1;
[5] 0, 4, 0, 6, 0, 1;
[6] 0, 0, 12, 0, 8, 0, 1;
[7] 0, 8, 0, 24, 0, 10, 0, 1;
[8] 0, 0, 32, 0, 40, 0, 12, 0, 1;
[9] 0, 16, 0, 80, 0, 60, 0, 14, 0, 1;
The first few polynomials:
p(0,x) = 1;
p(1,x) = x;
p(2,x) = x^2;
p(3,x) = 2*x + x^3;
p(4,x) = 4*x^2 + x^4;
p(5,x) = 4*x + 6*x^3 + x^5;
p(6,x) = 12*x^2 + 8*x^4 + x^6;
Row sums are
A001045 starting with 1, which is
A152046. These are in signed form also the alternating row sums. Diagonal sums are aerated
A133494.
-
using Nemo # Returns row n.
function A329918(row)
R, x = PolynomialRing(ZZ, "x")
function p(n)
n < 3 && return x^n
x*p(n-1) + 2*p(n-2)
end
p = p(row)
[coeff(p, k) for k in 0:row]
end
for row in 0:9 println(A329918(row)) end # prints triangle
-
T := (n, k) -> `if`((n+k)::odd, 0, 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2)):
seq(seq(T(n, k), k=0..n), n=0..11);
A323210
a(n) = 9*J(n)^2 where J(n) are the Jacobsthal numbers A001045 with J(0) = 1.
Original entry on oeis.org
1, 9, 9, 81, 225, 1089, 3969, 16641, 65025, 263169, 1046529, 4198401, 16769025, 67125249, 268402689, 1073807361, 4294836225, 17180131329, 68718952449, 274878955521, 1099509530625, 4398050705409, 17592177655809, 70368760954881, 281474943156225, 1125899973951489
Offset: 0
-
gf := (8*x^3 - 24*x^2 + 6*x + 1)/((4*x - 1)*(2*x + 1)*(x - 1)):
ser := series(gf,x,32): seq(coeff(ser,x,n), n=0..25);
-
LinearRecurrence[{3, 6, -8}, {1, 9, 9, 81}, 25]
-
# Demonstrates the product formula.
CC = ComplexField(200)
def t(n,k): return CC(3)*cos(CC(pi*k/n)) - CC(i)*sin(CC(pi*k/n))
def T(n,k): return t(n,k)*(t(n,k).conjugate())
def a(n): return prod(T(n,k) for k in (1..n))
print([a(n).real().round() for n in (0..29)])
Showing 1-9 of 9 results.
Comments