cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A324117 Number of odd divisors in A156552(n): a(1) = 0, for n > 1, a(n) = A001227(A156552(n)) = A000005(A322993(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 3, 4, 1, 2, 2, 4, 2, 4, 1, 4, 1, 2, 2, 4, 2, 4, 1, 2, 4, 4, 1, 2, 1, 2, 2, 8, 1, 2, 2, 3, 4, 2, 1, 2, 3, 2, 4, 6, 1, 2, 1, 4, 2, 6, 2, 4, 1, 4, 2, 2, 1, 4, 1, 4, 2, 4, 2, 4, 1, 2, 4, 4, 1, 6, 4, 8, 8, 8, 1, 6, 3, 4, 6, 12, 4, 4, 1, 3, 4, 4, 1, 6, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2019

Keywords

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A000005(A322993(n)) = A000005(A156552(2*A246277(n))) = A324105(2*A246277(n)).

A322994 Möbius transform of A322993.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 7, 1, 4, 1, 15, 3, 8, 1, 6, 1, 8, 7, 31, 1, 8, 2, 63, 4, 16, 1, 5, 1, 16, 15, 127, 3, 8, 1, 255, 31, 16, 1, 9, 1, 32, 4, 511, 1, 16, 2, 14, 63, 64, 1, 12, 7, 32, 127, 1023, 1, 8, 1, 2047, 8, 32, 15, 17, 1, 128, 255, 13, 1, 16, 1, 4095, 6, 256, 3, 33, 1, 32, 8, 8191, 1, 16, 31, 16383, 511, 64, 1, 12, 7, 512, 1023
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2019

Keywords

Comments

Möbius transform of A000265(A156552(n)).

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d)*A322993(d).

A324118 Sum of odd divisors in A156552(n): a(1) = 0, for n > 1, a(n) = A000593(A156552(n)) = A000203(A322993(n)).

Original entry on oeis.org

0, 1, 1, 4, 1, 6, 1, 8, 4, 13, 1, 12, 1, 18, 6, 24, 1, 14, 1, 20, 13, 48, 1, 24, 4, 84, 8, 48, 1, 32, 1, 32, 18, 176, 6, 40, 1, 258, 48, 56, 1, 38, 1, 68, 12, 800, 1, 48, 4, 31, 84, 132, 1, 30, 13, 72, 176, 1302, 1, 44, 1, 2736, 20, 104, 18, 96, 1, 304, 258, 42, 1, 72, 1, 4356, 14, 624, 6, 160, 1, 80, 24, 10928, 1, 124, 48, 20520, 800, 240, 1, 78, 13
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2019

Keywords

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = A000593(A156552(n)) = A000203(A322993(n)) = A323243(2*A246277(n)).

A329373 Dirichlet convolution of the identity function with A322993.

Original entry on oeis.org

0, 1, 1, 5, 1, 10, 1, 17, 6, 16, 1, 40, 1, 26, 13, 49, 1, 49, 1, 66, 19, 46, 1, 124, 8, 80, 25, 108, 1, 114, 1, 129, 31, 148, 17, 185, 1, 278, 49, 206, 1, 182, 1, 192, 65, 538, 1, 340, 10, 111, 85, 330, 1, 190, 25, 336, 151, 1056, 1, 428, 1, 2082, 97, 321, 35, 318, 1, 606, 283, 258, 1, 557, 1, 4136, 87, 1128, 23, 530, 1, 566, 90, 8236, 1, 684, 55, 16430
Offset: 1

Views

Author

Antti Karttunen, Nov 12 2019

Keywords

Comments

Equally, Dirichlet convolution of sigma (A000203) with A322994 (Möbius transform of A322993).

Crossrefs

Programs

  • PARI
    A000265(n) = (n/2^valuation(n, 2));
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A322993(n) = if(1==n,0,A000265(A156552(n)));
    A329373(n) = sumdiv(n,d,(n/d)*A322993(d));

Formula

a(n) = Sum_{d|n} d * A322993(n/d).
a(n) = Sum_{d|n} A000203(n/d) * A322994(d).

A350063 a(n) is the smallest number with the same prime signature as A322993(n), with a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 6, 1, 2, 1, 2, 4, 6, 1, 2, 2, 6, 2, 6, 1, 6, 1, 2, 2, 6, 2, 8, 1, 2, 6, 6, 1, 2, 1, 2, 2, 24, 1, 2, 2, 4, 6, 2, 1, 2, 4, 2, 6, 12, 1, 2, 1, 6, 2, 12, 2, 6, 1, 6, 2, 2, 1, 6, 1, 6, 2, 6, 2, 6, 1, 2, 6, 6, 1, 12, 6, 30, 24, 24, 1, 12, 4, 6, 12, 60, 6, 6, 1, 4, 6, 6, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 29 2022

Keywords

Crossrefs

Cf. A000265, A046523, A156552, A322993, A350062, A350064, A350065 (rgs-transform).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A350063(n) = if(1==n,0,A046523(A000265(A156552(n))));

Formula

a(1) = 0; for n > 1, a(n) = A046523(A322993(n)) = A046523(A000265(A156552(n))).

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A348717 a(n) is the least k such that A003961^i(k) = n for some i >= 0 (where A003961^i denotes the i-th iterate of A003961).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 10, 2, 12, 2, 14, 6, 16, 2, 18, 2, 20, 10, 22, 2, 24, 4, 26, 8, 28, 2, 30, 2, 32, 14, 34, 6, 36, 2, 38, 22, 40, 2, 42, 2, 44, 12, 46, 2, 48, 4, 50, 26, 52, 2, 54, 10, 56, 34, 58, 2, 60, 2, 62, 20, 64, 14, 66, 2, 68, 38, 70, 2, 72, 2
Offset: 1

Views

Author

Rémy Sigrist, Oct 31 2021

Keywords

Comments

All terms except a(1) = 1 are even.
To compute a(n) for n > 1:
- if n = Product_{j = 1..o} prime(p_j)^e_j (where prime(i) denotes the i-th prime number, p_1 < ... < p_o and e_1 > 0)
- then a(n) = Product_{j = 1..o} prime(p_j + 1 - p_1)^e_j.
This sequence has similarities with A304776: here we shift down prime indexes, there prime exponents.
Smallest number generated by uniformly decrementing the indices of the prime factors of n. Thus, for n > 1, the smallest m > 1 such that the first differences of the indices of the ordered prime factors (including repetitions) are the same for m and n. As a function, a(.) preserves properties such as prime signature. - Peter Munn, May 12 2022

Crossrefs

Positions of particular values (see formula section): A000040, A001248, A006094, A030078, A030514, A046301, A050997, A090076, A090090, A166329, A251720.
Also see formula section for the relationship to: A000265, A003961, A004277, A005940, A020639, A046523, A055396, A071364, A122111, A156552, A243055, A243074, A297845, A322993.
Sequences with comparable definitions: A304776, A316437.
Cf. A246277 (terms halved), A305897 (restricted growth sequence transform), A354185 (Möbius transform), A354186 (Dirichlet inverse), A354187 (sum with it).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{f = FactorInteger[n], d}, d = PrimePi[f[[1, 1]]] - 1; Times @@ ((Prime[PrimePi[#[[1]]] - d]^#[[2]]) & /@ f)]; Array[a, 100] (* Amiram Eldar, Oct 31 2021 *)
  • PARI
    a(n) = { my (f=factor(n)); if (#f~>0, my (pi1=primepi(f[1,1])); for (k=1, #f~, f[k,1] = prime(primepi(f[k,1])-pi1+1))); factorback(f) }

Formula

a(n) = n iff n belongs to A004277.
A003961^(A055396(n)-1)(a(n)) = n for any n > 1.
a(n) = 2 iff n belongs to A000040 (prime numbers).
a(n) = 4 iff n belongs to A001248 (squares of prime numbers).
a(n) = 6 iff n belongs to A006094 (products of two successive prime numbers).
a(n) = 8 iff n belongs to A030078 (cubes of prime numbers).
a(n) = 10 iff n belongs to A090076.
a(n) = 12 iff n belongs to A251720.
a(n) = 14 iff n belongs to A090090.
a(n) = 16 iff n belongs to A030514.
a(n) = 30 iff n belongs to A046301.
a(n) = 32 iff n belongs to A050997.
a(n) = 36 iff n belongs to A166329.
a(1) = 1, for n > 1, a(n) = 2*A246277(n). - Antti Karttunen, Feb 23 2022
a(n) = A122111(A243074(A122111(n))). - Peter Munn, Feb 23 2022
From Peter Munn and Antti Karttunen, May 12 2022: (Start)
a(1) = 1; a(2n) = 2n; a(A003961(n)) = a(n). [complete definition]
a(n) = A005940(1+A322993(n)) = A005940(1+A000265(A156552(n))).
Equivalently, A156552(a(n)) = A000265(A156552(n)).
A297845(a(n), A020639(n)) = n.
A046523(a(n)) = A046523(n).
A071364(a(n)) = A071364(n).
a(n) >= A071364(n).
A243055(a(n)) = A243055(n).
(End)

A323902 a(n) = A002487(A156552(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 3, 4, 1, 5, 1, 7, 4, 6, 1, 7, 2, 7, 3, 9, 1, 8, 1, 5, 5, 8, 3, 8, 1, 9, 6, 10, 1, 11, 1, 11, 5, 10, 1, 9, 2, 7, 7, 13, 1, 7, 4, 13, 8, 11, 1, 13, 1, 12, 7, 6, 5, 14, 1, 15, 9, 11, 1, 11, 1, 13, 5, 17, 3, 17, 1, 13, 4, 14, 1, 18, 6, 15, 10, 16, 1, 12, 4, 19, 11, 16, 7, 11, 1, 9, 9, 12, 1, 20, 1, 19, 8
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2019

Keywords

Comments

Even though certain subset of terms of A156552 soon grow quite big, this sequence still has a quite moderate growth rate, thanks to the compensating effect of A002487.

Crossrefs

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A323902(n) = A002487(A156552(n));

Formula

a(n) = A002487(A156552(n)) = A002487(A322993(n)).
a(p) = 1 for all primes p.

A324542 Möbius transform of A324118, where A324118(n) = A000593(A156552(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 4, 3, 11, 1, 3, 1, 16, 4, 16, 1, 5, 1, 4, 11, 46, 1, 8, 3, 82, 4, 27, 1, 10, 1, 8, 16, 174, 4, 20, 1, 256, 46, 32, 1, 4, 1, 17, 3, 798, 1, 8, 3, 15, 82, 45, 1, 12, 11, 20, 174, 1300, 1, 2, 1, 2734, 4, 72, 16, 27, 1, 125, 256, 8, 1, 20, 1, 4354, 5, 363, 4, 25, 1, 8, 16, 10926, 1, 53, 46, 20518, 798, 168, 1, 35, 11, 317
Offset: 1

Views

Author

Antti Karttunen, Mar 07 2019

Keywords

Comments

The first three zeros after a(1) occur at n = 192, 288, 3645.
The first negative term is a(150) = -1. There are 184 negative terms among the first 4473 terms.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A324118(d).

A342656 a(n) = A087436(A156552(n)); Number of odd prime factors in A156552(n), counted with repetitions.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 2, 0, 1, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 1, 3, 0, 1, 2, 2, 0, 1, 0, 1, 1, 4, 0, 1, 1, 2, 2, 1, 0, 1, 2, 1, 2, 3, 0, 1, 0, 2, 1, 3, 1, 2, 0, 2, 1, 1, 0, 2, 0, 2, 1, 2, 1, 2, 0, 1, 2, 2, 0, 3, 2, 3, 4, 4, 0, 3, 2, 2, 3, 4, 2, 2, 0, 2, 2, 2, 0, 3, 0, 1, 2
Offset: 2

Views

Author

Antti Karttunen, Mar 18 2021

Keywords

Crossrefs

Programs

  • PARI
    A087436(n) = (bigomega(n>>valuation(n,2)));
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res};
    A342656(n) = A087436(A156552(n));
    
  • PARI
    \\ Version using the factorization file available at https://oeis.org/A156552/a156552.txt
    v156552sigs = readvec("a156552.txt");
    A342656(n) = if(2==n,0,my(prsig=v156552sigs[n],ps=prsig[1],es=prsig[2]); vecsum(es)-((2==ps[1])*es[1])); \\ Antti Karttunen, Jan 29 2022

Formula

a(n) = A087436(A156552(n)) = A001222(A322993(n)).
a(n) = A342655(2*A246277(n)) = 1 + A342655(n) - A055396(n).
a(p) = 0 for all primes p.
a(A003961(n)) = a(n).
Showing 1-10 of 20 results. Next