A323022 Fourth omega of n. Number of distinct multiplicities in the prime signature of n.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
The prime signature of 1286485200 is {1, 1, 1, 2, 2, 3, 4}, in which 1 appears three times, two appears twice, and 3 and 4 both appear once, so there are 3 distinct multiplicities {1, 2, 3} and hence a(1286485200) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
Mathematica
red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]; Table[PrimeNu[red[red[n]]],{n,200}]
-
PARI
a(n) = my(e=factor(n)[, 2], s = Set(e), m=Map(), v=vector(#s)); for(i=1, #s, mapput(m,s[i],i)); for(i=1, #e, v[mapget(m,e[i])]++); #Set(v) \\ David A. Corneth, Jan 02 2019
-
PARI
A071625(n) = #Set(factor(n)[, 2]); \\ From A071625 A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); A323022(n) = A071625(A181819(n)); \\ Antti Karttunen, Jan 03 2019
Formula
Extensions
More terms from Antti Karttunen, Jan 03 2019
Comments