cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A071625 Number of distinct exponents when n is factorized as a product of primes.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

First term greater than 2 is a(360) = 3.
From Michel Marcus, Apr 24 2016: (Start)
A006939(n) gives the least m such that a(m) = n.
A062770 is the sequence of integers m such that a(m) = 1. (End)
We define the k-th omega of n to be Omega(red^{k-1}(n)) where Omega = A001222 and red^{k} is the k-th functional iteration of A181819. The first two omegas are A001222 and A001221, while this sequence is the third, and A323022 is the fourth. The zeroth omega is not uniquely determined from prime signature, but one possible choice is A056239 (sum of prime indices). - Gus Wiseman, Jan 02 2019
Sanna (2020) proved that for each k>=1, the sequence of numbers n with A071625(n) = k has an asymptotic density A_k = (6/Pi^2) * Sum_{n>=1, n squarefree} rho_k(n)/psi(n), where psi is the Dedekind psi function (A001615), and rho_k(n) is defined by rho_1(n) = 1 if n = 1 and 0 otherwise, rho_{k+1}(n) = 0 if n = 1 and (1/(n-1)) * Sum_{d|n, dAmiram Eldar, Oct 18 2020

Examples

			n = 5040 = 2^4*(3*5)^2*7, three different exponents arise:4,2 and 1; so a(5040)=3.
		

Crossrefs

Programs

  • Maple
    # Using function 'PrimeSignature' from A124010.
    a := n -> nops(convert(PrimeSignature(n), set)):
    seq(a(n), n = 1..105); # Peter Luschny, Jun 15 2025
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]];
    lf[x_] := Length[FactorInteger[x]];
    ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}];
    Table[Length[Union[ep[w]]], {w, 1, 256}]
    (* Second program: *)
    {0}~Join~Array[Length@ Union@ FactorInteger[#][[All, -1]] &, 104, 2] (* Michael De Vlieger, Apr 10 2019 *)
  • PARI
    a(n) = #Set(factor(n)[,2]); \\ Michel Marcus, Mar 12 2015
    
  • Python
    from sympy import factorint
    def a(n): return len(set(factorint(n).values()))
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Sep 01 2022

A323014 a(1) = 0; a(prime) = 1; otherwise a(n) = 1 + a(A181819(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Except for n = 2, same as A182850. Unlike A182850, the terms of this sequence depend only on the prime signature (A101296, A118914) of the index.

Crossrefs

Positions of 1's are the prime numbers A000040.
Positions of 2's are the proper prime powers A246547.
Positions of 3's are A182853.
Row lengths of A323023.

Programs

  • Mathematica
    dep[n_]:=If[n==1,0,If[PrimeQ[n],1,1+dep[Times@@Prime/@Last/@FactorInteger[n]]]];
    Array[dep,100]
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A323014(n) = if(1==n,0,if(isprime(n),1, 1+A323014(A181819(n)))); \\ Antti Karttunen, Jun 10 2022

Formula

For all n >= 1, a(n) = a(A046523(n)). [See comment] - Antti Karttunen, Jun 10 2022

Extensions

Terms a(88) and beyond from Antti Karttunen, Jun 10 2022

A323023 Irregular triangle read by rows where row n is the omega-sequence of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 4, 1, 1, 3, 2, 2, 1, 1, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 1, 3, 3, 1, 1, 5, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 4, 2, 1, 1, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

We define the omega-sequence of n to have length A323014(n), and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of A181819.
Except for n = 1, all rows end with 1. If n is not prime, the term in row n prior to the last is A304465(n).

Examples

			The sequence of omega-sequences begins:
   1:            26: 2 2 1      51: 2 2 1        76: 3 2 2 1
   2: 1          27: 3 1        52: 3 2 2 1      77: 2 2 1
   3: 1          28: 3 2 2 1    53: 1            78: 3 3 1
   4: 2 1        29: 1          54: 4 2 2 1      79: 1
   5: 1          30: 3 3 1      55: 2 2 1        80: 5 2 2 1
   6: 2 2 1      31: 1          56: 4 2 2 1      81: 4 1
   7: 1          32: 5 1        57: 2 2 1        82: 2 2 1
   8: 3 1        33: 2 2 1      58: 2 2 1        83: 1
   9: 2 1        34: 2 2 1      59: 1            84: 4 3 2 2 1
  10: 2 2 1      35: 2 2 1      60: 4 3 2 2 1    85: 2 2 1
  11: 1          36: 4 2 1      61: 1            86: 2 2 1
  12: 3 2 2 1    37: 1          62: 2 2 1        87: 2 2 1
  13: 1          38: 2 2 1      63: 3 2 2 1      88: 4 2 2 1
  14: 2 2 1      39: 2 2 1      64: 6 1          89: 1
  15: 2 2 1      40: 4 2 2 1    65: 2 2 1        90: 4 3 2 2 1
  16: 4 1        41: 1          66: 3 3 1        91: 2 2 1
  17: 1          42: 3 3 1      67: 1            92: 3 2 2 1
  18: 3 2 2 1    43: 1          68: 3 2 2 1      93: 2 2 1
  19: 1          44: 3 2 2 1    69: 2 2 1        94: 2 2 1
  20: 3 2 2 1    45: 3 2 2 1    70: 3 3 1        95: 2 2 1
  21: 2 2 1      46: 2 2 1      71: 1            96: 6 2 2 1
  22: 2 2 1      47: 1          72: 5 2 2 1      97: 1
  23: 1          48: 5 2 2 1    73: 1            98: 3 2 2 1
  24: 4 2 2 1    49: 2 1        74: 2 2 1        99: 3 2 2 1
  25: 2 1        50: 3 2 2 1    75: 3 2 2 1     100: 4 2 1
		

Crossrefs

Row lengths are A323014, or A182850 if we assume A182850(2) = 1.
First column is empty if n = 1 and otherwise A001222(n).
Second column is empty if n is 1 or prime and otherwise A001221(n).
Third column is empty if n is 1, prime, or a power of a prime and otherwise A071625(n).

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    omg[n_,k_]:=If[k==1,PrimeOmega[n],omg[red[n],k-1]];
    dep[n_]:=If[n==1,0,If[PrimeQ[n],1,1+dep[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]]];
    Table[omg[n,k],{n,100},{k,dep[n]}]

A325277 Irregular triangle read by rows where row 1 is {1} and row n is the sequence starting with n and repeatedly applying A181819 until a prime number is reached.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 4, 3, 7, 8, 5, 9, 3, 10, 4, 3, 11, 12, 6, 4, 3, 13, 14, 4, 3, 15, 4, 3, 16, 7, 17, 18, 6, 4, 3, 19, 20, 6, 4, 3, 21, 4, 3, 22, 4, 3, 23, 24, 10, 4, 3, 25, 3, 26, 4, 3, 27, 5, 28, 6, 4, 3, 29, 30, 8, 5, 31, 32, 11, 33, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The function A181819 maps p^i*...*q^j to prime(i)*...*prime(j) where p through q are distinct primes.

Examples

			Triangle begins:
   1            26 4 3        51 4 3          76 6 4 3
   2            27 5          52 6 4 3        77 4 3
   3            28 6 4 3      53              78 8 5
   4 3          29            54 10 4 3       79
   5            30 8 5        55 4 3          80 14 4 3
   6 4 3        31            56 10 4 3       81 7
   7            32 11         57 4 3          82 4 3
   8 5          33 4 3        58 4 3          83
   9 3          34 4 3        59              84 12 6 4 3
  10 4 3        35 4 3        60 12 6 4 3     85 4 3
  11            36 9 3        61              86 4 3
  12 6 4 3      37            62 4 3          87 4 3
  13            38 4 3        63 6 4 3        88 10 4 3
  14 4 3        39 4 3        64 13           89
  15 4 3        40 10 4 3     65 4 3          90 12 6 4 3
  16 7          41            66 8 5          91 4 3
  17            42 8 5        67              92 6 4 3
  18 6 4 3      43            68 6 4 3        93 4 3
  19            44 6 4 3      69 4 3          94 4 3
  20 6 4 3      45 6 4 3      70 8 5          95 4 3
  21 4 3        46 4 3        71              96 22 4 3
  22 4 3        47            72 15 4 3       97
  23            48 14 4 3     73              98 6 4 3
  24 10 4 3     49 3          74 4 3          99 6 4 3
  25 3          50 6 4 3      75 6 4 3       100 9 3
		

Crossrefs

Row lengths are 1 for n = 1 and A323014(n) for n > 1.

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[NestWhileList[red,n,#>1&&!PrimeQ[#]&],{n,30}]

Formula

T(n,k) = A325239(n,k) for k <= A323014(n).
A001222(T(n,k)) = A323023(n,k) for n > 1.

A325272 Adjusted frequency depth of n!.

Original entry on oeis.org

0, 1, 3, 4, 5, 4, 6, 6, 6, 4, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 8, 7, 7, 7, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is one plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.

Examples

			Recursively applying A181819 starting with 120 gives 120 -> 20 -> 6 -> 4 -> 3, so a(5) = 5.
		

Crossrefs

a(n) = A001222(A325275(n)).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fd[n_]:=Switch[n,1,0,?PrimeQ,1,,1+fd[Times@@Prime/@Last/@FactorInteger[n]]];
    Table[fd[n!],{n,30}]

Formula

a(n) = A323014(n!).

A325273 Prime omicron of n!.

Original entry on oeis.org

0, 0, 1, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The prime omicron of n (A304465) is 0 if n is 1, 1 if n is prime, and otherwise the second-to-last part of the omega-sequence of n. For example, the prime omicron of 180 is 2.
Conjecture: all terms after a(10) = 4 are less than 4.
From James Rayman, Apr 17 2021: (Start)
The conjecture is false. a(3804) = 4. In fact, there are 91 values of n < 10000 such that a(n) = 4.
The first value of n such that a(n) = 5 is 37934. For any other n < 5*10^5, a(n) < 5. (End)

Crossrefs

a(n) = A055396(A325275(n)/2).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    omicron[n_]:=Switch[n,1,0,?PrimeQ,1,,omseq[n][[-2]]];
    Table[omicron[n!],{n,0,100}]
  • Python
    from sympy.ntheory import *
    def red(v):
        r = {}
        for i in v: r[i] = r.get(i, 0) + 1
        return r
    def omicron(v):
        if len(v) == 0: return 0
        if len(v) == 1: return v[0]
        else: return omicron(list(red(v).values()))
    f, a_list = {}, []
    for i in range(101):
        a_list.append(omicron(list(f.values())))
        g = factorint(i+1)
        for k in g: f[k] = f.get(k, 0) + g[k]
    print(a_list) # James Rayman, Apr 17 2021

Extensions

More terms from James Rayman, Apr 17 2021

A325268 Triangle read by rows where T(n,k) is the number of integer partitions of n with omicron k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1, 7, 2, 0, 0, 1, 0, 1, 12, 1, 0, 0, 0, 1, 0, 1, 17, 2, 1, 0, 0, 0, 1, 0, 1, 24, 4, 0, 0, 0, 0, 0, 1, 0, 1, 33, 5, 1, 1, 0, 0, 0, 0, 1, 0, 1, 44, 9, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 57, 14, 3, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. The omicron of the partition is 0 if the omega-sequence is empty, 1 if it is a singleton, and otherwise the second-to-last part. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1), and its omicron is 2.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  3  0  1
  0  1  5  0  0  1
  0  1  7  2  0  0  1
  0  1 12  1  0  0  0  1
  0  1 17  2  1  0  0  0  1
  0  1 24  4  0  0  0  0  0  1
  0  1 33  5  1  1  0  0  0  0  1
  0  1 44  9  1  0  0  0  0  0  0  1
  0  1 57 14  3  0  1  0  0  0  0  0  1
  0  1 76 20  3  0  0  0  0  0  0  0  0  1
Row n = 8 counts the following partitions.
  (8)  (44)       (431)  (2222)  (11111111)
       (53)       (521)
       (62)
       (71)
       (332)
       (422)
       (611)
       (3221)
       (3311)
       (4211)
       (5111)
       (22211)
       (32111)
       (41111)
       (221111)
       (311111)
       (2111111)
		

Crossrefs

Row sums are A000041. Column k = 2 is A325267.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Switch[#,{},0,{},1,,NestWhile[Sort[Length/@Split[#]]&,#,Length[#]>1&]//First]==k&]],{n,0,10},{k,0,n}]
  • PARI
    omicron(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); r=#p; for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L); r)}
    row(n)={my(v=vector(1+n)); forpart(p=n, v[1 + omicron(Vec(p))]++); v}
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023

A325249 Sum of the omega-sequence of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 4, 3, 5, 1, 8, 1, 5, 5, 5, 1, 8, 1, 8, 5, 5, 1, 9, 3, 5, 4, 8, 1, 7, 1, 6, 5, 5, 5, 7, 1, 5, 5, 9, 1, 7, 1, 8, 8, 5, 1, 10, 3, 8, 5, 8, 1, 9, 5, 9, 5, 5, 1, 12, 1, 5, 8, 7, 5, 7, 1, 8, 5, 7, 1, 10, 1, 5, 8, 8, 5, 7, 1, 10, 5, 5, 1, 12, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The omega-sequence of 180 is (5,3,2,2,1) with sum 13, so a(180) = 13.
		

Crossrefs

Positions of m's are A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Total[omseq[n]],{n,100}]

Formula

a(n) = A056239(A325248(n)).
a(n!) = A325274(n).

A325248 Heinz number of the omega-sequence of n.

Original entry on oeis.org

1, 2, 2, 6, 2, 18, 2, 10, 6, 18, 2, 90, 2, 18, 18, 14, 2, 90, 2, 90, 18, 18, 2, 126, 6, 18, 10, 90, 2, 50, 2, 22, 18, 18, 18, 42, 2, 18, 18, 126, 2, 50, 2, 90, 90, 18, 2, 198, 6, 90, 18, 90, 2, 126, 18, 126, 18, 18, 2, 630, 2, 18, 90, 26, 18, 50, 2, 90, 18, 50
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The omega-sequence of 180 is (5,3,2,2,1) with Heinz number 990, so a(180) = 990.
		

Crossrefs

Positions of squarefree terms are A325247.
Positions of normal numbers (A055932) are A325251.
First positions of each distinct term are A325238.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Times@@Prime/@omseq[n],{n,100}]

Formula

A001222(a(n)) = A323014(n).
A061395(a(n)) = A001222(n).
A304465(n) = A055396(a(n)/2).
A325249(n) = A056239(a(n)).
a(n!) = A325275(n).
Showing 1-10 of 42 results. Next