A323294 Number of 3-uniform hypergraphs spanning n labeled vertices where every two edges have two vertices in common.
1, 0, 0, 1, 11, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431
Offset: 0
Keywords
Examples
The a(4) = 11 hypergraphs: {{1,2,3},{1,2,4}} {{1,2,3},{1,3,4}} {{1,2,3},{2,3,4}} {{1,2,4},{1,3,4}} {{1,2,4},{2,3,4}} {{1,3,4},{2,3,4}} {{1,2,3},{1,2,4},{1,3,4}} {{1,2,3},{1,2,4},{2,3,4}} {{1,2,3},{1,3,4},{2,3,4}} {{1,2,4},{1,3,4},{2,3,4}} {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]<=1&],Union@@#==Range[n]&]],{n,10}]
-
PARI
seq(n)={Vec(serlaplace(1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x + O(x^(n-1)))/2))} \\ Andrew Howroyd, Aug 18 2019
Formula
a(n) = binomial(n,2) for n >= 5. - Gus Wiseman, Jan 16 2019
Binomial transform is A289837. - Gus Wiseman, Jan 16 2019
a(n) = A000217(n-1) for n >= 5. - Alois P. Heinz, Jan 24 2019
E.g.f.: 1 - x^2/2 - x^3/3 + 5*x^4/24 + x^2*exp(x)/2. - Andrew Howroyd, Aug 18 2019