A323434 Number of ways to split a strict integer partition of n into consecutive subsequences of equal length.
1, 1, 1, 3, 3, 5, 7, 9, 11, 15, 20, 24, 31, 38, 48, 59, 72, 86, 106, 125, 150, 180, 213, 250, 296, 347, 407, 477, 555, 645, 751, 869, 1003, 1161, 1334, 1534, 1763, 2018, 2306, 2637, 3002, 3418, 3886, 4409, 4994, 5659, 6390, 7214, 8135, 9160, 10300, 11580, 12990
Offset: 0
Keywords
Examples
The a(10) = 20 split partitions: [10] [9 1] [8 2] [7 3] [7 2 1] [6 4] [6 3 1] [5 4 1] [5 3 2] [4 3 2 1] . [9] [8] [7] [6] [4 3] [1] [2] [3] [4] [2 1] . [7] [6] [5] [5] [2] [3] [4] [3] [1] [1] [1] [2] . [4] [3] [2] [1]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..7000
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, numtheory[tau](t), b(n, i-1, t)+ b(n-i, min(n-i, i-1), t+1))) end: a:= n-> `if`(n=0, 1, b(n$2, 0)): seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2019
-
Mathematica
Table[Sum[Length[Divisors[Length[ptn]]],{ptn,Select[IntegerPartitions[n],UnsameQ@@#&]}],{n,30}] (* Second program: *) b[n_, i_, t_] := b[n, i, t] = If[n>i(i+1)/2, 0, If[n == 0, DivisorSigma[0, t], b[n, i-1, t] + b[n-i, Min[n-i, i-1], t+1]]]; a[n_] := If[n == 0, 1, b[n, n, 0]]; a /@ Range[0, 60] (* Jean-François Alcover, May 18 2021, after Alois P. Heinz *)
Formula
a(n) = Sum_y A000005(k), where the sum is over all strict integer partitions of n and k is the number of parts.