cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A053529 a(n) = n! * number of partitions of n.

Original entry on oeis.org

1, 1, 4, 18, 120, 840, 7920, 75600, 887040, 10886400, 152409600, 2235340800, 36883123200, 628929100800, 11769069312000, 230150688768000, 4833164464128000, 105639166144512000, 2464913876705280000, 59606099200327680000, 1525429559126753280000, 40464026199993876480000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

Comments

Commuting permutations: number of ordered pairs (g, h) in Sym(n) such that gh = hg.
Equivalently sum of the order of all normalizers of all cyclic subgroups of Sym(n). - Olivier Gérard, Apr 04 2012
From Gus Wiseman, Jan 16 2019: (Start)
Also the number of Young tableaux with distinct entries from 1 to n, where a Young tableau is an array obtained by replacing the dots in the Ferrers diagram of an integer partition of n with positive integers. For example, the a(3) = 18 tableaux are:
123 213 132 312 231 321
.
12 21 13 31 23 32
3 3 2 2 1 1
.
1 2 1 3 2 3
2 1 3 1 3 2
3 3 2 2 1 1
(End)

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.12, solution.

Crossrefs

Column k=2 of A362827.
Sequences counting pairs of functions from an n-set to itself: A053529, A181162, A239749-A239785, A239836-A239841.

Programs

  • Magma
    a:= func< n | NumberOfPartitions(n)*Factorial(n) >; [ a(n) : n in [0..25]]; // Vincenzo Librandi, Jan 17 2019
    
  • Maple
    seq(count(Permutation(n))*count(Partition(n)),n=1..20); # Zerinvary Lajos, Oct 16 2006
    with(combinat): A053529 := proc(n): n! * numbpart(n) end: seq(A053529(n), n=0..20); # Johannes W. Meijer, Jul 28 2016
  • Mathematica
    Table[PartitionsP[n] n!, {n, 0, 20}] (* T. D. Noe, Jun 19 2012 *)
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(k=1, N, x^k/(1-x^k)/k)))) \\ Joerg Arndt, Apr 16 2010
    
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(sum(n=0, N, x^n/prod(k=1,n,1-x^k)))) \\ Joerg Arndt, Jan 29 2011
    
  • PARI
    a(n) = n!*numbpart(n); \\ Michel Marcus, Jul 28 2016
    
  • Python
    from math import factorial
    from sympy import npartitions
    def A053529(n): return factorial(n)*npartitions(n) # Chai Wah Wu, Jul 10 2023

Formula

E.g.f: Sum_{n>=0} x^n/(Product_{k=1..n} 1-x^k) = exp(Sum_{n>=1} (x^n/n)/(1-x^n)). - Joerg Arndt, Jan 29 2011
a(n) = Sum{k=1..n} (((n-1)!/(n-k)!)*sigma(k)*a(n-k)), n > 0, and a(0)=1. See A274760. - Johannes W. Meijer, Jul 28 2016
a(n) ~ sqrt(Pi/6)*exp(sqrt(2/3)*Pi*sqrt(n))*n^n/(2*exp(n)*sqrt(n)). - Ilya Gutkovskiy, Jul 28 2016

A323433 Number of ways to split an integer partition of n into consecutive subsequences of equal length.

Original entry on oeis.org

1, 1, 3, 5, 10, 14, 25, 34, 54, 74, 109, 146, 211, 276, 381, 501, 675, 871, 1156, 1477, 1926, 2447, 3142, 3957, 5038, 6291, 7918, 9839, 12277, 15148, 18773, 23027, 28333, 34587, 42284, 51357, 62466, 75503, 91344, 109971, 132421, 158755, 190365, 227354, 271511
Offset: 0

Views

Author

Gus Wiseman, Jan 15 2019

Keywords

Examples

			The a(5) = 14 split partitions:
  [5] [4 1] [3 2] [3 1 1] [2 2 1] [2 1 1 1] [1 1 1 1 1]
.
  [4] [3] [2 1]
  [1] [2] [1 1]
.
  [3] [2]
  [1] [2]
  [1] [1]
.
  [2]
  [1]
  [1]
  [1]
.
  [1]
  [1]
  [1]
  [1]
  [1]
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0 or i=1, numtheory
          [tau](t+n), b(n, i-1, t)+b(n-i, min(n-i, i), t+1))
        end:
    a:= n-> `if`(n=0, 1, b(n$2, 0)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 15 2019
  • Mathematica
    Table[Sum[Length[Divisors[Length[ptn]]],{ptn,IntegerPartitions[n]}],{n,30}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1,
         DivisorSigma[0, t+n], b[n, i-1, t] + b[n-i, Min[n-i, i], t+1]];
    a[n_] := If[n == 0, 1, b[n, n, 0]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(1+sum(k=1, N, numdiv(k)*x^k/prod(j=1, k, 1-x^j))) \\ Seiichi Manyama, Jan 21 2022
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(1+sum(i=1, N, sum(j=1, N\i, x^(i*j)/prod(k=1, i*j, 1-x^k)))) \\ Seiichi Manyama, Jan 21 2022

Formula

a(n) = Sum_y A000005(k), where the sum is over all integer partitions of n and k is the number of parts.
From Seiichi Manyama, Jan 21 2022: (Start)
G.f.: 1 + Sum_{k>=1} A000005(k) * x^k/Product_{j=1..k} (1-x^j).
G.f.: 1 + Sum_{i>=1} Sum_{j>=1} x^(i*j)/Product_{k=1..i*j} (1-x^k). (End)
a(n) = Sum_{i=1..n} Sum_{j=1..n} A008284(n,i*j). - Ridouane Oudra, Apr 13 2023

A323529 Number of strict square plane partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 7, 11, 13, 19, 23, 31, 37, 47, 55, 69, 79, 95, 109, 129, 145, 169, 189, 217, 241, 273, 301, 339, 371, 413, 451, 499, 541, 595, 643, 703, 757, 823, 925, 999, 1107, 1229, 1387, 1559, 1807, 2071, 2453, 2893, 3451, 4109, 5011
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(12) = 5 strict square plane partitions:
  [12]
.
  [1 2] [1 2] [1 3] [1 4]
  [3 6] [4 5] [2 6] [2 5]
The a(15) = 13 strict square plane partitions:
  [15]
.
  [7 5] [8 4] [9 3] [6 5] [7 4] [9 2] [6 4] [7 3] [8 2] [6 3] [6 3] [7 2]
  [2 1] [2 1] [2 1] [3 1] [3 1] [3 1] [3 2] [4 1] [4 1] [4 2] [5 1] [5 1]
		

Crossrefs

Programs

  • Maple
    h:= proc(n) h(n):= (n^2)!*mul(k!/(n+k)!, k=0..n-1) end:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, `if`(issqr(t), h(isqrt(t)), 0),
             b(n, i-1, t) +b(n-i, min(n-i, i-1), t+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jan 24 2019
  • Mathematica
    Table[Sum[Length[Select[Union[Sort/@Tuples[Reverse/@IntegerPartitions[#,{Length[ptn]}]&/@ptn]],UnsameQ@@Join@@#&&And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}]
    (* Second program: *)
    h[n_] := (n^2)! Product[k!/(k+n)!, {k, 0, n-1}];
    b[n_, i_, t_] := b[n, i, t] = If[n > i(i+1)/2, 0, If[n == 0, If[IntegerQ[ Sqrt[t]], h[Sqrt[t]], 0], b[n-i, Min[n-i, i-1], t+1] + b[n, i-1, t]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 70] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{j>=0} A039622(j) * A008289(n,j^2). - Alois P. Heinz, Jan 24 2019

Extensions

More terms from Alois P. Heinz, Jan 24 2019

A323522 Number of ways to fill a square matrix with the parts of a strict integer partition of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 25, 49, 73, 121, 145, 217, 265, 361, 433, 553, 649, 817, 937, 1129, 1297, 1537, 1729, 2017, 2257, 2593, 2881, 3265, 3601, 4057, 4441, 4945, 5401, 5977, 6481, 7129, 7705, 8425, 9073, 9865, 373465, 374353, 738025, 1101865, 1828513
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(10) = 25 matrices:
  [10]
.
  [4 3] [4 3] [4 2] [4 2] [4 1] [4 1] [3 4] [3 4]
  [2 1] [1 2] [3 1] [1 3] [3 2] [2 3] [2 1] [1 2]
.
  [3 2] [3 2] [3 1] [3 1] [2 4] [2 4] [2 3] [2 3]
  [4 1] [1 4] [4 2] [2 4] [3 1] [1 3] [4 1] [1 4]
.
  [2 1] [2 1] [1 4] [1 4] [1 3] [1 3] [1 2] [1 2]
  [4 3] [3 4] [3 2] [2 3] [4 2] [2 4] [4 3] [3 4]
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    a:= n-> (l-> add(l[i^2+1]*(i^2)!, i=0..floor(sqrt(nops(l)-1))))(b(n$2)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 17 2019
  • Mathematica
    Table[Sum[(k^2)!*Length[Select[IntegerPartitions[n,{k^2}],UnsameQ@@#&]],{k,n}],{n,20}]
    (* Second program: *)
    q[n_, k_] := q[n, k] = If[n < k || k < 1, 0,
         If[n == 1, 1, q[n-k, k] + q[n-k, k-1]]];
    a[n_] := If[n == 0, 1, Sum[(k^2)! q[n, k^2], {k, 0, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 20 2021 *)

Formula

a(n) = Sum_{k >= 0} (k^2)! * Q(n, k^2) where Q = A008289.

A323530 Number of square plane partitions of n with strictly decreasing rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 5, 8, 10, 15, 18, 25, 30, 39, 46, 58, 67, 82, 94, 112, 127, 149, 168, 194, 218, 251, 282, 324, 368, 425, 489, 573, 670, 797, 952, 1148, 1392, 1703, 2086, 2568, 3168, 3908, 4823, 5947, 7318, 8986, 11012, 13443, 16371, 19866
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2019

Keywords

Examples

			The a(12) = 8 plane partitions:
  [12]
.
  [5 4] [6 3] [7 2] [5 3] [6 2] [4 3] [5 2]
  [2 1] [2 1] [2 1] [3 1] [3 1] [3 2] [4 1]
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn],And@@Greater@@@#&&And@@Greater@@@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}]
Showing 1-5 of 5 results.