cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323501 Number of minimum dominating sets in the n X n white bishop graph.

Original entry on oeis.org

2, 6, 5, 2, 22, 356, 108, 24, 672, 25056, 4680, 720, 38160, 2531520, 342720, 40320, 3467520, 358444800, 38102400, 3628800, 460857600, 68388364800, 5987520000, 479001600, 84304281600, 16979648716800, 1264085222400, 87178291200, 20312541849600
Offset: 2

Views

Author

Eric W. Weisstein, Jan 16 2019

Keywords

Crossrefs

Cf. A182333 (bishop graph), A323500 (black bishop graph).

Programs

  • Mathematica
    Table[Piecewise[{{(n/2)! (n + 1)/2, Mod[n, 4] == 0}, {((n - 1)/2)!, Mod[n, 4] == 1}, {(n/2 - 1)! (n^2 + n + 2)/4, Mod[n, 4] == 2}, {((n - 3)/2)! (n + 1) (n^3 + n^2 - 6 n + 6)/16, Mod[n, 4] == 3}}], {n, 2, 20}] (* Eric W. Weisstein, Feb 27 2025 *)
  • PARI
    \\ See A289170 for DomSetCount, Bishop.
    a(n)={Vec(DomSetCount(Bishop(n, 1), x + O(x^((n+3)\2))))[1]} \\ Andrew Howroyd, Sep 08 2019
    
  • PARI
    a(n)=(n\4*2)!*if(n%4<2, if(n%2==0, (n + 1)/2, 1), if(n%2==0, (n^2 + n + 2)/4, (n + 1)*(n^3 + n^2 - 6*n + 6)/16)); \\ Andrew Howroyd, Sep 09 2019

Formula

From Andrew Howroyd, Sep 09 2019: (Start)
a(n) = (n/2)! * (n + 1)/2 for n mod 4 = 0;
a(n) = ((n-1)/2)! for n mod 4 = 1;
a(n) = (n/2-1)! * (n^2 + n + 2)/4 for n mod 4 = 2;
a(n) = ((n-3)/2)! * (n + 1)*(n^3 + n^2 - 6*n + 6)/16 for n mod 4 = 3.
(End)

Extensions

Offset corrected and terms a(11) and beyond from Andrew Howroyd, Sep 08 2019