cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323542 a(n) = Product_{k=0..n} (k^4 + (n-k)^4).

Original entry on oeis.org

0, 1, 512, 1896129, 14101250048, 242755875390625, 7888809923487203328, 452522453429009743939201, 42521926771106843499966758912, 6212193882217859346149080691430849, 1350441156698962215630405632000000000000, 421551664651621436548685508587919503984205889
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 17 2019

Keywords

Crossrefs

Cf. 2*A000538 and A259108 (with sum instead of product).

Programs

  • Magma
    [(&*[(k^4 + (n-k)^4): k in [0..n]]): n in [0..15]]; // Vincenzo Librandi, Jan 18 2019
    
  • Mathematica
    Table[Product[k^4+(n-k)^4, {k, 0, n}], {n, 0, 15}]
  • PARI
    m=4; vector(15, n, n--; prod(k=0,n, k^m + (n-k)^m)) \\ G. C. Greubel, Jan 18 2019
    
  • Sage
    m=4; [product(k^m +(n-k)^m for k in (0..n)) for n in (0..15)] # G. C. Greubel, Jan 18 2019

Formula

a(n) ~ exp((Pi*(sqrt(2) - 1/2) - 4)*n) * n^(4*n + 4).