A323583 Number of ways to split an integer partition of n into consecutive subsequences.
1, 1, 3, 7, 17, 37, 83, 175, 373, 773, 1603, 3275, 6693, 13557, 27447, 55315, 111397, 223769, 449287, 900795, 1805465, 3615929, 7240327, 14491623, 29001625, 58027017, 116093259, 232237583, 464558201, 929224589, 1858623819, 3717475031, 7435314013, 14871103069
Offset: 0
Keywords
Examples
The a(3) = 7 ways to split an integer partition of 3 into consecutive subsequences are (3), (21), (2)(1), (111), (11)(1), (1)(11), (1)(1)(1).
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i<1, 0, b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i)))) end: a:= n-> ceil(b(n$2)): seq(a(n), n=0..33); # Alois P. Heinz, Jan 01 2023
-
Mathematica
Table[Sum[2^(Length[ptn]-1),{ptn,IntegerPartitions[n]}],{n,40}] (* Second program: *) (1/2) CoefficientList[1 - 1/QPochhammer[2, x] + O[x]^100 , x] (* Jean-François Alcover, Jan 02 2022, after Vladimir Reshetnikov in A070933 *)
Formula
a(n) = A070933(n)/2.
O.g.f.: (1/2)*Product_{n >= 1} 1/(1 - 2*x^n).
G.f.: 1 + Sum_{k>=1} 2^(k - 1) * x^k / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020