A323599 Dirichlet convolution of the identity function with omega.
0, 1, 1, 3, 1, 7, 1, 7, 4, 9, 1, 19, 1, 11, 10, 15, 1, 25, 1, 25, 12, 15, 1, 43, 6, 17, 13, 31, 1, 54, 1, 31, 16, 21, 14, 67, 1, 23, 18, 57, 1, 68, 1, 43, 37, 27, 1, 91, 8, 49, 22, 49, 1, 79, 18, 71, 24, 33, 1, 142, 1, 35, 45, 63, 20, 96, 1, 61, 28, 90, 1, 151, 1, 41, 55
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Maple
with(numtheory): a:= n-> add(d*nops(factorset(n/d)), d=divisors(n)): seq(a(n), n=1..100); # Alois P. Heinz, Jan 28 2019
-
Mathematica
Table[DivisorSum[n, # PrimeNu[n/#] &], {n, 75}] (* Michael De Vlieger, Jan 27 2019 *)
-
PARI
a(n) = sumdiv(n, d, d*omega(n/d)); \\ Michel Marcus, Jan 22 2019
Formula
a(n) = Sum_{d|n} d * A001221(n/d).
a(n) = Sum_{p|n} sigma(n/p) where p is prime and sigma(n) = A000203(n). - Ridouane Oudra, Apr 28 2019
From Torlach Rush, Mar 23 2024: (Start)
For p in primes: (Start)
a(p^(k+1)) = a(p^k) + p^k, k >= 0.
a(p^2) = p + 1.
(End)
a(2^k) = 2^k - 1, k >= 0.
(End)
Comments