cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323599 Dirichlet convolution of the identity function with omega.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 7, 4, 9, 1, 19, 1, 11, 10, 15, 1, 25, 1, 25, 12, 15, 1, 43, 6, 17, 13, 31, 1, 54, 1, 31, 16, 21, 14, 67, 1, 23, 18, 57, 1, 68, 1, 43, 37, 27, 1, 91, 8, 49, 22, 49, 1, 79, 18, 71, 24, 33, 1, 142, 1, 35, 45, 63, 20, 96, 1, 61, 28, 90, 1, 151, 1, 41, 55
Offset: 1

Views

Author

Torlach Rush, Jan 18 2019

Keywords

Comments

a(n) = omega(n) = 1 iff n is prime.
a(n) = A323600(n) = 1 iff n is prime.
a(n) = A323600(n) - 1 = 1 iff n is the square of a prime.
a(n) = A323600(n) - 2 = 2 iff n is a squarefree semiprime.
a(n) = A323600(n) - (p + 2) if n is the cube of a prime p.

Crossrefs

Inverse Möbius transform of A069359.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(d*nops(factorset(n/d)), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 28 2019
  • Mathematica
    Table[DivisorSum[n, # PrimeNu[n/#] &], {n, 75}] (* Michael De Vlieger, Jan 27 2019 *)
  • PARI
    a(n) = sumdiv(n, d, d*omega(n/d)); \\ Michel Marcus, Jan 22 2019

Formula

a(n) = Sum_{d|n} d * A001221(n/d).
a(n) = Sum_{p|n} sigma(n/p) where p is prime and sigma(n) = A000203(n). - Ridouane Oudra, Apr 28 2019
a(n) = Sum_{d|n} A069359(d), a(n) = A276085(A329380(n)). - Antti Karttunen, Nov 12 2019
From Torlach Rush, Mar 23 2024: (Start)
For p in primes: (Start)
a(p^(k+1)) = a(p^k) + p^k, k >= 0.
a(p^2) = p + 1.
(End)
a(2^k) = 2^k - 1, k >= 0.
(End)