A323601 Decimal expansion of sin(Pi/7).
4, 3, 3, 8, 8, 3, 7, 3, 9, 1, 1, 7, 5, 5, 8, 1, 2, 0, 4, 7, 5, 7, 6, 8, 3, 3, 2, 8, 4, 8, 3, 5, 8, 7, 5, 4, 6, 0, 9, 9, 9, 0, 7, 2, 7, 7, 8, 7, 4, 5, 9, 8, 7, 6, 4, 4, 4, 5, 4, 7, 3, 0, 3, 5, 3, 2, 2, 0, 3, 2, 5, 1, 6, 5, 3, 1, 9, 8, 4, 2, 1, 5, 2, 0, 7, 8, 4, 0, 2, 1, 7, 7, 4, 4, 5, 6, 1, 0, 2, 0, 8, 8, 7, 4, 4, 1
Offset: 0
Examples
0.43388373911755812047576833284835875460999072778745987644454730353220325...
Links
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Sin(Pi(R)/7); // G. C. Greubel, Feb 08 2019
-
Mathematica
RealDigits[Sin[Pi/7], 10, 120][[1]]
-
PARI
default(realprecision, 100); sin(Pi/7) \\ G. C. Greubel, Feb 08 2019
-
PARI
polrootsreal(64*x^6-112*x^4+56*x^2-7)[4] \\ Charles R Greathouse IV, Feb 05 2025
-
Sage
numerical_approx(sin(pi/7), digits=100) # G. C. Greubel, Feb 08 2019
Formula
Root of the equation 64*x^6 - 112*x^4 + 56*x^2 - 7 = 0. (Other +- A232735 and +- 0.7818314... = +- cos(3*Pi/14))
Equals sqrt((196 + 7*i*2^(2/3)*(21*i*sqrt(3) - 7)^(1/3)*(i + sqrt(3)) + i*2^(4/3)*(21*i*sqrt(3) - 7)^(2/3)*(2*i + sqrt(3)))/336), where i is the imaginary unit.
Equals cos(5*Pi/14).
From Gleb Koloskov, Jul 15 2021: (Start)
Positive root of the equation x^3 + sqrt(7)/2*x^2 - sqrt(7)/8 = 0.
Equals ((4*sqrt(7)*(13+3*sqrt(3)*i))^(1/3)+28*(4*sqrt(7)*(13+3*sqrt(3)*i))^(-1/3)-2*sqrt(7))/12, where i is the imaginary unit. (End)
This^2 + A073052^2=1. - R. J. Mathar, Aug 31 2025