cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323601 Decimal expansion of sin(Pi/7).

Original entry on oeis.org

4, 3, 3, 8, 8, 3, 7, 3, 9, 1, 1, 7, 5, 5, 8, 1, 2, 0, 4, 7, 5, 7, 6, 8, 3, 3, 2, 8, 4, 8, 3, 5, 8, 7, 5, 4, 6, 0, 9, 9, 9, 0, 7, 2, 7, 7, 8, 7, 4, 5, 9, 8, 7, 6, 4, 4, 4, 5, 4, 7, 3, 0, 3, 5, 3, 2, 2, 0, 3, 2, 5, 1, 6, 5, 3, 1, 9, 8, 4, 2, 1, 5, 2, 0, 7, 8, 4, 0, 2, 1, 7, 7, 4, 4, 5, 6, 1, 0, 2, 0, 8, 8, 7, 4, 4, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 19 2019

Keywords

Examples

			0.43388373911755812047576833284835875460999072778745987644454730353220325...
		

Crossrefs

Cf. A019829 (sin(Pi/9)), A232736 (sin(Pi/14)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Sin(Pi(R)/7); // G. C. Greubel, Feb 08 2019
    
  • Mathematica
    RealDigits[Sin[Pi/7], 10, 120][[1]]
  • PARI
    default(realprecision, 100); sin(Pi/7) \\ G. C. Greubel, Feb 08 2019
    
  • PARI
    polrootsreal(64*x^6-112*x^4+56*x^2-7)[4] \\ Charles R Greathouse IV, Feb 05 2025
    
  • Sage
    numerical_approx(sin(pi/7), digits=100) # G. C. Greubel, Feb 08 2019

Formula

Root of the equation 64*x^6 - 112*x^4 + 56*x^2 - 7 = 0. (Other +- A232735 and +- 0.7818314... = +- cos(3*Pi/14))
Equals sqrt((196 + 7*i*2^(2/3)*(21*i*sqrt(3) - 7)^(1/3)*(i + sqrt(3)) + i*2^(4/3)*(21*i*sqrt(3) - 7)^(2/3)*(2*i + sqrt(3)))/336), where i is the imaginary unit.
Equals cos(5*Pi/14).
From Gleb Koloskov, Jul 15 2021: (Start)
Positive root of the equation x^3 + sqrt(7)/2*x^2 - sqrt(7)/8 = 0.
Equals ((4*sqrt(7)*(13+3*sqrt(3)*i))^(1/3)+28*(4*sqrt(7)*(13+3*sqrt(3)*i))^(-1/3)-2*sqrt(7))/12, where i is the imaginary unit. (End)
Equals 1/A121598 = A272487/2. - Hugo Pfoertner, Dec 15 2024
This^2 + A073052^2=1. - R. J. Mathar, Aug 31 2025