A323629 List of 6-powerful numbers (for the definition of k-powerful see A323395).
96, 128, 144, 160, 176, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504, 512, 520, 528, 536
Offset: 1
Examples
a(1) = 96 because {1, 2, 7, 10, 11, 12, 13, 14, 16, 17, 21, 22, 27, 28, 32, 33, 35, 36, 37, 38, 39, 42, 47, 48, 51, 52, 53, 54, 56, 57, 63, 66, 67, 68, 71, 72, 73, 74, 77, 78, 79, 82, 88, 89, 91, 92, 93, 94} has the property that the sum of the i-th powers of this set equals the same for its complement in {1, 2, ..., 96}, for each i = 0, 1, 2, 3, 4, 5, 6.
References
- S. Golan, R. Pratt, S. Wagon, Equipowerful numbers, to appear.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- G. Freiman and S. Litsyn, Asymptotically exact bounds on the size of high-order spectral-null codes, IEE Trans. Inform. Theory 45:6 (1999) 1798-1807.
- Stan Wagon, Witnessing sets for the 6-powerful numbers
- Stan Wagon, Overview table
- Index entries for linear recurrences with constant coefficients, signature (2, -1).
Programs
-
Mathematica
LinearRecurrence[{2,-1},{96,128,144,160,176,192,200},50] (* Harvey P. Dale, Aug 27 2025 *)
Formula
G.f.: -8*x*(x^6+2*x^2+8*x-12)/(x-1)^2. - Alois P. Heinz, Jan 25 2019
Extensions
More terms added by Stan Wagon, Jan 25 2019
Comments