A323658 Number of bipartite graphs associated with connected transitive oriented graphs.
1, 1, 1, 2, 7, 25, 133, 854
Offset: 0
Examples
Example: For n = 4 the a(4) = 7 solutions are given by the edge sets E1 = {(1,5), (1,7), (2,6), (2,7), (2,8), (3,7), (4,8)}, E2 = {(1,5), (1,8), (2,6), (2,8), (3,7), (3,8), (4,8)}, E3 = {(1,5), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)}, E4 = {(1,5), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (4,8)}, E5 = {(1,5), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)}, E6 = {(1,5), (1,6), (1,7), (1,8), (2,6), (2,8), (3,7), (3,8), (4,8)}, E7 = {(1,5), (1,6), (1,7), (1,8), (2,6), (2,7), (2,8), (3,7), (3,8), (4,8)}.
Links
- M. Estrada and R. H. Villarreal, Cohen-Macaulay bipartite graphs, Arch. Math. (Basel) 68(2) (1997), 124-128.
- J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22(3) (2005), 289-302.
- M. Mahmoudi and A. Mousivand, An alternative proof of a characterization of Cohen-Macaulay bipartite graphs, Abh. Math. Semin. Univ. Hambg. 80(1) (2010), 145-148.
- R. H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66(3) (1990), 277-293.
- R. H. Villarreal, Unmixed bipartite graphs, Rev. Colomb. Mat. 41(2) (2007), 393-395.
- R. Zaare-Nahandi, Cohen-Macaulayness of bipartite graphs, revisited, Bull. Malays. Math. Sci. Soc. 38(4) (2015), 1601-1607.
Comments