cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073482 Largest prime factor of the n-th squarefree number.

Original entry on oeis.org

1, 2, 3, 5, 3, 7, 5, 11, 13, 7, 5, 17, 19, 7, 11, 23, 13, 29, 5, 31, 11, 17, 7, 37, 19, 13, 41, 7, 43, 23, 47, 17, 53, 11, 19, 29, 59, 61, 31, 13, 11, 67, 23, 7, 71, 73, 37, 11, 13, 79, 41, 83, 17, 43, 29, 89, 13, 31, 47, 19, 97, 101, 17, 103, 7, 53, 107, 109, 11, 37, 113, 19, 23, 59, 17, 61, 41
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Crossrefs

Programs

  • Haskell
    a073482 = a006530 . a005117  -- Reinhard Zumkeller, Feb 04 2012
    
  • Maple
    issquarefree := proc(n::integer) local nf, ifa, lar; nf := op(2,ifactors(n)); for ifa from 1 to nops(nf) do lar := op(1,op(ifa,nf)); if op(2,op(ifa,nf)) >= 2 then RETURN(0); fi; od : RETURN(lar); end: printf("1,"); for n from 2 to 100 do lfa := issquarefree(n); if lfa > 0 then printf("%a,",lfa); fi; od : # R. J. Mathar, Apr 02 2006
  • Mathematica
    FactorInteger[#][[-1, 1]]& /@ Select[Range[100], SquareFreeQ] (* Jean-François Alcover, Feb 01 2018 *)
    s[n_] := Module[{f = FactorInteger[n]}, If[AllTrue[f[[;; , 2]], # < 2 &], f[[-1, 1]], Nothing]]; Array[s, 200] (* Amiram Eldar, Mar 03 2024 *)
  • PARI
    do(x)=my(v=List([1])); forfactored(n=2,x\1, if(vecmax(n[2][,2])==1, listput(v, vecmax(n[2][,1])))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017
    
  • Python
    from math import isqrt
    from sympy import mobius, primefactors
    def A073482(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return max(primefactors(kmax),default=1) # Chai Wah Wu, Aug 28 2024

Formula

a(n) = A006530(A005117(n)).
a(n) = A265668(n, A001221(n)). - Reinhard Zumkeller, Dec 13 2015
Sum_{A005117(n) <= x} a(n) = Sum_{i=1..k} d_i * x^2/log(x)^i + O(x^2/log(x)^(k+1)), for any given positive integer k, where d_i are constants, d_1 = 15/(2*Pi^2) = 0.759908... (A323669) (De Koninck and Jakimczuk, 2024). - Amiram Eldar, Mar 03 2024

Extensions

More terms from Jason Earls, Aug 06 2002

A121176 Union of {8, 9, 18}, S, 2S and 4S, where S = squarefree numbers (A005117).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92
Offset: 1

Views

Author

N. J. A. Sloane, Sep 13 2006

Keywords

Comments

The asymptotic density of this sequence is 15/(2*Pi^2) (A323669). - Amiram Eldar, May 10 2022

Crossrefs

Programs

  • Mathematica
    Union[Join[{9, 18}, Select[Range[100], (e = IntegerExponent[#,2]) <= 3 && SquareFreeQ[#/2^e] &]]] (* Amiram Eldar, May 10 2022 *)

A327340 Numerator of the rationals r(n) = (1/n^2)*Phi_1(n), with Phi_1(n) = Sum{k=1..n} psi(k), with Dedekind's psi function.

Original entry on oeis.org

1, 1, 8, 7, 4, 8, 40, 13, 64, 41, 94, 59, 132, 39, 4, 51, 222, 43, 278, 157, 346, 191, 406, 227, 484, 263, 562, 305, 640, 178, 24, 99, 280, 447, 942, 169, 1052, 278, 1168, 31, 1282, 689, 1422, 747, 58, 819, 1686, 99, 1838, 482
Offset: 1

Views

Author

Wolfdieter Lang, Sep 03 2019

Keywords

Comments

The corresponding denominators are given in A327341.
Dedekind's psi(k) = k*Product_{p|k}(1 + 1/p), with primes p, and the empty product is set to 1. See psi(k) = A001615(k), k >= 1. In the Walfisz reference psi(k) = phi_1(k).
In the Walfisz reference, Satz 2., p. 100, the approximation for Phi_1(x) = (15/(2*Pi^2))*x^2 + O(x*(log(x))^{2/3}) is given (with B instead of the O() notation). For the constant 15/(2*Pi^2) see A323669 .

Examples

			The rationals (in lowest terms) begin: 1/1, 1/1, 8/9, 7/8, 4/5, 8/9, 40/49, 13/16, 64/81, 41/50, 94/121, 59/72, 132/169, 39/49, 4/5, 51/64, 222/289, 43/54, 278/361, 157/200, 346/441, 191/242, 406/529, 227/288, 484/625, 263/338, 562/729, 305/392, 640/841, 178/225, 24/31, ...
The limit of r(n) for n-> infinity is A323669 = 0.759908877317533285829...
r(10^5) is approximatly 0.7599142240 (10 digits).
		

References

  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 100, Satz 2.

Crossrefs

Cf. A001615, A173290, A323669, A327341 (denominators).

Programs

  • Mathematica
    psi[0] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); a[n_] := Numerator[Sum[psi[k], {k, 1, n}]/n^2]; Array[a, 50] (* Amiram Eldar, Sep 03 2019 *)
  • PARI
    dpsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = numerator(sum(k=1, n, dpsi(k))/n^2); \\ Michel Marcus, Sep 18 2023

Formula

a(n) = numerator(r(n)), with the rationals r(n) = (1/n^2)*Sum{k=1..n}(k*Product_{p|k}(1 + 1/p)), with distinct prime p divisors of k (with empty product set to 1 for k = 1), for n >= 1.
a(n) = numerator(A173290(n)/n^2). - Amiram Eldar, Nov 24 2022

A143268 a(n) = phi(n)*T(n), where phi(n) is Euler's totient function (A000010) and T(n) = n*(n+1)/2 is the n-th triangular number (A000217).

Original entry on oeis.org

1, 3, 12, 20, 60, 42, 168, 144, 270, 220, 660, 312, 1092, 630, 960, 1088, 2448, 1026, 3420, 1680, 2772, 2530, 6072, 2400, 6500, 4212, 6804, 4872, 12180, 3720, 14880, 8448, 11220, 9520, 15120, 7992, 25308, 13338, 18720, 13120, 34440, 10836, 39732
Offset: 1

Views

Author

Gary W. Adamson, Aug 03 2008

Keywords

Examples

			a(4) = 20 = phi(4) * T(4) = 2 * 10.
a(4) = 20 = sum of row 4 terms of triangle A143267: (2 + 4 + 6 + 8).
		

Crossrefs

Programs

Formula

a(n) = sum of n-th row of triangle A143267.
a(n) = n*(n+1)*phi(n)/2. - Emeric Deutsch, Aug 23 2008
Sum_{k=1..n} a(k) ~ c * n^4, where c = 3/(4*Pi^2) = A323669 / 10 = 0.0759908... . - Amiram Eldar, Nov 27 2024

Extensions

Extended by Emeric Deutsch, Aug 16 2008
Showing 1-4 of 4 results.