cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323816 Number of set-systems covering n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 12, 1993, 67098768, 144115187673233113, 1329227995784915871895000745158568460, 226156424291633194186662080095093570015284114833799899660370362545578585265
Offset: 0

Views

Author

Gus Wiseman, Jan 30 2019

Keywords

Examples

			The a(3) = 12 set-systems:
  {{1,2,3}}
  {{1,2}, {1,3}}
  {{1,2}, {2,3}}
  {{1,3}, {2,3}}
  {{1,2}, {1,2,3}}
  {{1,3}, {1,2,3}}
  {{2,3}, {1,2,3}}
  {{1,2}, {1,3}, {2,3}}
  {{1,2}, {1,3}, {1,2,3}}
  {{1,2}, {2,3}, {1,2,3}}
  {{1,3}, {2,3}, {1,2,3}}
  {{1,2}, {1,3}, {2,3}, {1,2,3}}
		

Crossrefs

Cf. A000295, A000371, A000612, A003465 (with singletons), A006129 (covers by pairs), A016031, A055154, A055621, A305001, A317795 (unlabeled case), A323817 (connected case).

Programs

  • Magma
    [(&+[(-1)^(n-j)*Binomial(n,j)*2^(2^j -j-1): j in [0..n]]): n in [0..12]]; // G. C. Greubel, Oct 05 2022
    
  • Maple
    a:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Jan 30 2019
  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^(2^k-k-1),{k,0,n}],{n,0,8}]
  • SageMath
    def A323816(n): return sum((-1)^j*binomial(n,j)*2^(2^(n-j) -n+j-1) for j in range(n+1))
    [A323816(n) for n in range(12)] # G. C. Greubel, Oct 05 2022

Formula

Inverse binomial transform of A016031 shifted once to the left.