A323816 Number of set-systems covering n vertices with no singletons.
1, 0, 1, 12, 1993, 67098768, 144115187673233113, 1329227995784915871895000745158568460, 226156424291633194186662080095093570015284114833799899660370362545578585265
Offset: 0
Keywords
Examples
The a(3) = 12 set-systems: {{1,2,3}} {{1,2}, {1,3}} {{1,2}, {2,3}} {{1,3}, {2,3}} {{1,2}, {1,2,3}} {{1,3}, {1,2,3}} {{2,3}, {1,2,3}} {{1,2}, {1,3}, {2,3}} {{1,2}, {1,3}, {1,2,3}} {{1,2}, {2,3}, {1,2,3}} {{1,3}, {2,3}, {1,2,3}} {{1,2}, {1,3}, {2,3}, {1,2,3}}
Links
- G. C. Greubel, Table of n, a(n) for n = 0..11
Crossrefs
Programs
-
Magma
[(&+[(-1)^(n-j)*Binomial(n,j)*2^(2^j -j-1): j in [0..n]]): n in [0..12]]; // G. C. Greubel, Oct 05 2022
-
Maple
a:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n): seq(a(n), n=0..8); # Alois P. Heinz, Jan 30 2019
-
Mathematica
Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^(2^k-k-1),{k,0,n}],{n,0,8}]
-
SageMath
def A323816(n): return sum((-1)^j*binomial(n,j)*2^(2^(n-j) -n+j-1) for j in range(n+1)) [A323816(n) for n in range(12)] # G. C. Greubel, Oct 05 2022
Formula
Inverse binomial transform of A016031 shifted once to the left.