A323818 Number of connected set-systems covering n vertices.
1, 1, 4, 96, 31840, 2147156736, 9223372011084915712, 170141183460469231602560095199828453376, 57896044618658097711785492504343953923912733397452774312021795134847892828160
Offset: 0
Keywords
Examples
The a(2) = 4 set-systems: {{1, 2}} {{1}, {1,2}} {{2}, {1,2}} {{1}, {2}, {1,2}}
Links
- G. C. Greubel, Table of n, a(n) for n = 0..11
Crossrefs
Programs
-
Magma
m:=12; f:= func< x | 1-x + Log( (&+[2^(2^n-1)*x^n/Factorial(n): n in [0..m+2]]) ) >; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 04 2022 -
Maple
b:= n-> add(binomial(n, k)*2^(2^(n-k)-1)*(-1)^k, k=0..n): a:= proc(n) option remember; b(n)-`if`(n=0, 0, add( k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n) end: seq(a(n), n=0..8); # Alois P. Heinz, Jan 30 2019
-
Mathematica
nn=8; ser=Sum[2^(2^n-1)*x^n/n!,{n,0,nn}]; Table[SeriesCoefficient[1-x+Log[ser],{x,0,n}]*n!,{n,0,nn}]
-
SageMath
m=12; def f(x): return 1-x + log(sum(2^(2^n-1)*x^n/factorial(n) for n in range(m+2))) def A_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(x) ).egf_to_ogf().list() A_list(m) # G. C. Greubel, Oct 04 2022
Formula
E.g.f.: 1 - x + log(Sum_{n >= 0} 2^(2^n-1) * x^n/n!).
Logarithmic transform of A003465.
Comments