A323817 Number of connected set-systems covering n vertices with no singletons.
1, 0, 1, 12, 1990, 67098648, 144115187673201808, 1329227995784915871895000743748659792, 226156424291633194186662080095093570015284114833799899656335137245499581360
Offset: 0
Keywords
Examples
The a(3) = 12 set-systems: {{1, 2, 3}} {{1, 2}, {1, 3}} {{1, 2}, {2, 3}} {{1, 3}, {2, 3}} {{1, 2}, {1, 2, 3}} {{1, 3}, {1, 2, 3}} {{2, 3}, {1, 2, 3}} {{1, 2}, {1, 3}, {2, 3}} {{1, 2}, {1, 3}, {1, 2, 3}} {{1, 2}, {2, 3}, {1, 2, 3}} {{1, 3}, {2, 3}, {1, 2, 3}} {{1, 2}, {1, 3}, {2, 3},{1, 2, 3}} The A323816(4) - a(4) = 3 disconnected set-systems covering n vertices with no singletons: {{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}
Links
- G. C. Greubel, Table of n, a(n) for n = 0..11
Crossrefs
Programs
-
Magma
m:=10; A323816:= func< n | (&+[(-1)^(n-j)*Binomial(n,j)*2^(2^j -j-1): j in [0..n]]) >; f:= func< x | 1 + Log((&+[A323816(j)*x^j/Factorial(j): j in [0..m+2]])) >; R
:=PowerSeriesRing(Rationals(), m+1); Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 05 2022 -
Maple
b:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n): a:= proc(n) option remember; b(n)-`if`(n=0, 0, add( k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n) end: seq(a(n), n=0..8); # Alois P. Heinz, Jan 30 2019
-
Mathematica
nn=10; ser=Sum[Sum[(-1)^(n-k)*Binomial[n,k]*2^(2^k-k-1),{k,0,n}]*x^n/n!,{n,0,nn}]; Table[SeriesCoefficient[1+Log[ser],{x,0,n}]*n!,{n,0,nn}]
-
SageMath
m=10 def A323816(n): return sum((-1)^j*binomial(n,j)*2^(2^(n-j) -n+j-1) for j in range(n+1)) def A323817_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( 1 + log(sum(A323816(j)*x^j/factorial(j) for j in range(m+2))) ).egf_to_ogf().list() A323817_list(m) # G. C. Greubel, Oct 05 2022
Formula
Logarithmic transform of A323816.