cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A323817 Number of connected set-systems covering n vertices with no singletons.

Original entry on oeis.org

1, 0, 1, 12, 1990, 67098648, 144115187673201808, 1329227995784915871895000743748659792, 226156424291633194186662080095093570015284114833799899656335137245499581360
Offset: 0

Views

Author

Gus Wiseman, Jan 30 2019

Keywords

Examples

			The a(3) = 12 set-systems:
  {{1, 2, 3}}
  {{1, 2}, {1, 3}}
  {{1, 2}, {2, 3}}
  {{1, 3}, {2, 3}}
  {{1, 2}, {1, 2, 3}}
  {{1, 3}, {1, 2, 3}}
  {{2, 3}, {1, 2, 3}}
  {{1, 2}, {1, 3}, {2, 3}}
  {{1, 2}, {1, 3}, {1, 2, 3}}
  {{1, 2}, {2, 3}, {1, 2, 3}}
  {{1, 3}, {2, 3}, {1, 2, 3}}
  {{1, 2}, {1, 3}, {2, 3},{1, 2, 3}}
The A323816(4) - a(4) = 3 disconnected set-systems covering n vertices with no singletons:
  {{1, 2}, {3, 4}}
  {{1, 3}, {2, 4}}
  {{1, 4}, {2, 3}}
		

Crossrefs

Cf. A001187, A016031, A048143, A092918, A293510, A317795, A323816 (not necessarily connected), A323818 (with singletons), A323819, A323820 (unlabeled case).

Programs

  • Magma
    m:=10;
    A323816:= func< n | (&+[(-1)^(n-j)*Binomial(n,j)*2^(2^j -j-1): j in [0..n]]) >;
    f:= func< x | 1 + Log((&+[A323816(j)*x^j/Factorial(j): j in [0..m+2]])) >;
    R:=PowerSeriesRing(Rationals(), m+1);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 05 2022
    
  • Maple
    b:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n):
    a:= proc(n) option remember; b(n)-`if`(n=0, 0, add(
           k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n)
        end:
    seq(a(n), n=0..8);  # Alois P. Heinz, Jan 30 2019
  • Mathematica
    nn=10;
    ser=Sum[Sum[(-1)^(n-k)*Binomial[n,k]*2^(2^k-k-1),{k,0,n}]*x^n/n!,{n,0,nn}];
    Table[SeriesCoefficient[1+Log[ser],{x,0,n}]*n!,{n,0,nn}]
  • SageMath
    m=10
    def A323816(n): return sum((-1)^j*binomial(n,j)*2^(2^(n-j) -n+j-1) for j in range(n+1))
    def A323817_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( 1 + log(sum(A323816(j)*x^j/factorial(j) for j in range(m+2))) ).egf_to_ogf().list()
    A323817_list(m) # G. C. Greubel, Oct 05 2022

Formula

Logarithmic transform of A323816.