cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A035615 Number of winning length n strings with a 2-symbol alphabet in "same game".

Original entry on oeis.org

1, 0, 2, 2, 6, 12, 26, 58, 126, 278, 602, 1300, 2774, 5878, 12350, 25778, 53470, 110332, 226610, 463602, 945214, 1921550, 3896642, 7885092, 15927086, 32121582, 64697726, 130166378, 261637446, 525478668, 1054673162, 2115601450, 4241716734, 8501080838, 17031744170
Offset: 0

Views

Author

Keywords

Comments

Strings that can be reduced to null string by repeatedly removing an entire run of two or more consecutive symbols.

Examples

			11011001 is a winning string since 110{11}001 -> 11{000}1 -> {111} -> null.
		

Crossrefs

See A309874 for the losing strings.
For some similar questions in base 10, see A323830, A323831, A320487. - N. J. A. Sloane, Feb 04 2019
Row b=2 of A323844.

Programs

  • Mathematica
    Join[{1}, Rest[CoefficientList[Series[x (2x^6 - 6x^5 + 8x^4 + 2x^3 - 6x^2 + 2x)/((1 - x^2)(1 - 2x)(1 - x - x^2)^2), {x, 0, 40}], x]]] (* or *) Join[{1}, LinearRecurrence[{4, -2, -8, 6, 6, -3, -2}, {0, 2, 2, 6, 12, 26, 58}, 40]] (* Harvey P. Dale, Sep 26 2012 *)
  • PARI
    a(n)=if(n, ([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; -2,-3,6,6,-8,-2,4]^(n-1)*[0;2;2;6;12;26;58])[1,1], 1) \\ Charles R Greathouse IV, Jun 15 2015

Formula

G.f.: x(2x^6 - 6x^5 + 8x^4 + 2x^3 - 6x^2 + 2x)/[(1 - x^2)(1 - 2x)(1 - x - x^2)^2] (conjectured). - Ralf Stephan, May 11 2004. Established by Burns and Purcell - see link.
a(0) = 1, a(1) = 0, a(2) = 2, a(3) = 2, a(4) = 6, a(5) = 12, a(6) = 26, a(7) = 58, a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 3*a(n-6) - 2*a(n-7). - Harvey P. Dale, Sep 26 2012
a(n) = 2^n - 2 * n * Fibonacci(n-2) - (-1)^n - 1 for n >= 2 (proved by Burns and Purcell (2005, 2007)). - Petros Hadjicostas, Jul 04 2018

Extensions

More terms from Naohiro Nomoto, Jul 09 2001
Further terms from Sascha Kurz, Oct 19 2001
a(27)-a(36) from Robert Price, Apr 08 2019

A323830 a(0) = 1; thereafter a(n) is obtained by doubling a(n-1) and repeatedly deleting any string of identical digits.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 636, 1272, 25, 50, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 636, 1272, 25, 50, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 636, 1272, 25, 50
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2019, following a suggestion from Yukun Yao

Keywords

Comments

Periodic with period length 20.
Conjecture: If we start with any nonnegative number, and repeatedly double it and apply the "repeatedly delete any run of identical digits" operation described here, we eventually reach one of 0, 1, or 5.
In other words, the conjecture is that eventually we reach 0 or join the trajectory shown here or the trajectory shown in A323831.
The number of steps to reach 0, 1, or 5 is given in A323832.

Examples

			After a(15) = 32768 we get 65536 which becomes 636 after deleting "55". Then doubling 636 we get 1272, then 2544 which becomes 25 after deleting "44", then 50, then 100 which becomes 1 after deleting "00", and now the sequence repeats.
		

Crossrefs

See A035615 for a classic related base-2 sequence.

Programs

  • Mathematica
    dad[n_]:=FromDigits[FixedPoint[Flatten[Select[Split[#],Length[#]==1&]]&,IntegerDigits[2n]]];NestList[dad,1,100] (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    Vec((1 + 2*x)*(1 + 4*x^2 + 16*x^4 + 64*x^6 + 256*x^8 + 1024*x^10 + 4096*x^12 + 16384*x^14 + 636*x^16 + 25*x^18) / (1 - x^20) + O(x^40)) \\ Colin Barker, Feb 03 2019

Formula

From Colin Barker, Feb 03 2019: (Start)
G.f.: (1 + 2*x)*(1 + 4*x^2 + 16*x^4 + 64*x^6 + 256*x^8 + 1024*x^10 + 4096*x^12 + 16384*x^14 + 636*x^16 + 25*x^18) / (1 - x^20).
a(n) = a(n-20) for n>19.
(End)
a(n+1) = A321801(2*a(n)). For general numbers, the "repeatedly delete any run of identical digits" operation corresponds to repeatedly applying A321801. - Chai Wah Wu, Feb 11 2019
Showing 1-2 of 2 results.