A324011 Number of set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).
1, 0, 0, 0, 1, 0, 5, 14, 66, 307, 1554, 8415, 48530, 296582, 1913561, 12988776, 92467629, 688528288, 5349409512, 43270425827, 363680219762, 3170394634443, 28619600156344, 267129951788160, 2574517930001445, 25587989366964056, 261961602231869825
Offset: 0
Keywords
Examples
The a(4) = 1, a(6) = 5, and a(7) = 14 set partitions: {{13}{24}} {{135}{246}} {{13}{246}{57}} {{13}{25}{46}} {{13}{257}{46}} {{14}{25}{36}} {{135}{26}{47}} {{14}{26}{35}} {{135}{27}{46}} {{15}{24}{36}} {{136}{24}{57}} {{136}{25}{47}} {{14}{257}{36}} {{14}{26}{357}} {{146}{25}{37}} {{146}{27}{35}} {{15}{246}{37}} {{15}{247}{36}} {{16}{24}{357}} {{16}{247}{35}}
Links
- David Callan, On conjugates for set partitions and integer compositions, arXiv:math/0508052 [math.CO], 2005.
Crossrefs
Programs
-
Mathematica
Table[Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]//Length,{n,0,10}]
Extensions
a(11)-a(26) from Alois P. Heinz, Feb 12 2019
Comments