cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324059 Numbers n such that sigma(n)/(phi(n) + tau(n)) is a record.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 18, 24, 30, 42, 60, 84, 90, 120, 180, 210, 360, 420, 840, 1260, 1680, 2520, 4620, 7560, 9240, 13860, 18480, 27720, 55440, 110880, 120120, 180180, 240240, 360360, 720720, 1441440, 2162160, 3603600, 4084080, 4324320, 6126120, 12252240, 24504480
Offset: 1

Views

Author

Robert G. Wilson v, Feb 13 2019

Keywords

Comments

sigma(a(69))/(phi(a(69)) + tau(a(69))) = 857304000/23950081 ~= 35.7955.
Number of terms =< 10^k, k=0,1,2,3: 1, 5, 13, 19, 25, 29, 35, 41, 46, 50, 56, 63, 69, ..., .
All terms so far except 10, 18, 42, 84, 90 are in A025487. - David A. Corneth, Feb 14 2019

Examples

			a(7) = 18 since it is the first number greater than a(6) such that sigma(18)/(phi(18) + tau(18)) = 13/4 > 14/5 =  sigma(12)/(phi(12) + tau(12)).
		

Crossrefs

Programs

  • Maple
    Res:= NULL: mx:= 0: count:= 0:
    for n from 1 while count < 60 do
      v:= numtheory:-sigma(n)/(numtheory:-phi(n)+numtheory:-tau(n));
      if v > mx then
        mx:= v;
        count:= count+1;
        Res:= Res, n;
      fi
    od:
    Res; # Robert Israel, Feb 13 2019
  • Mathematica
    k = 1; mx = 0; lst = {}; While[k < 25000000, If[ DivisorSigma[1, k] > mx (EulerPhi[k] + DivisorSigma[0, k]), mx = DivisorSigma[1, k]/(EulerPhi[k] + DivisorSigma[0, k]); AppendTo[lst, k]]; k ++]; lst
    DeleteDuplicates[Table[{n,DivisorSigma[1,n]/(EulerPhi[n]+DivisorSigma[0,n])},{n,2451*10^4}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, Jun 08 2022 *)
  • PARI
    lista(nn) = {my(m=0, newm); for (n=1, nn, newm = sigma(n)/(eulerphi(n) + numdiv(n)); if (newm > m, print1(n, ", "); m = newm););} \\ Michel Marcus, Feb 13 2019