cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324054 a(n) = A000203(A005940(1+n)).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 13, 15, 8, 18, 24, 28, 31, 39, 40, 31, 12, 24, 32, 42, 48, 72, 78, 60, 57, 93, 124, 91, 156, 120, 121, 63, 14, 36, 48, 56, 72, 96, 104, 90, 96, 144, 192, 168, 248, 234, 240, 124, 133, 171, 228, 217, 342, 372, 403, 195, 400, 468, 624, 280, 781, 363, 364, 127, 18, 42, 56, 84, 84, 144, 156, 120, 112, 216, 288, 224
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2019

Keywords

Comments

As noted by David A. Corneth, the function f(n) = a(n-1) [that is, the offset-1 version of this sequence] seems to be "almost multiplicative". Sequence A324109 gives the positions n where f(n) satisfies the multiplicativity in a sense that f(n) = f(p(1)^e(1)) * ... * f(p(k)^e(k)), when n = p(1)^e(1) * ... * p(k)^e(k), and A324110 the positions where this does not hold.

Crossrefs

Cf. also A106737, A290077 (tau and phi similarly permuted).

Programs

  • Mathematica
    nn = 76; a[0] = 1; Do[Set[a[n], Prime[1 + DigitCount[n, 2, 0]]*a[n - 2^Floor@ Log2@ n]], {n, nn}]; Array[DivisorSigma[1, a[#]] &, nn, 0] (* Michael De Vlieger, Aug 03 2022 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A324054(n) = sigma(A005940(1+n));
    
  • PARI
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A324054(n): return prod(((p:=prime(len(a)+1))**(b+1)-1)//(p-1) for a, b in Counter(accumulate(bin(n)[2:].split('1')[:0:-1])).items()) # Chai Wah Wu, Mar 10 2023

Formula

a(n) = A000203(A005940(1+n)).
a(n) = A324056(n) * A038712(1+n).

A324111 Numbers n for which A324108(n) = A324054(n-1) and which are neither prime powers nor of the form 2^i * p^j, where p is an odd prime, with either exponent i or j > 0.

Original entry on oeis.org

1, 87, 174, 348, 696, 1392, 2091, 2784, 4182, 5568, 8364, 11136, 16683, 16728, 22272, 33215, 33366, 33456, 44544, 66430, 66732, 66912, 89088, 132860, 133464, 133824, 178176, 265720, 266928, 267179, 267648, 356352, 531440, 533856, 534358, 535296, 712704, 1062880, 1066877, 1067712, 1068716, 1070592, 1319235, 1425408
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Setwise difference of A324109 and A070776.
Setwise difference of A070537 and A324110.
If an odd number n > 1 is present, then all 2^k * n are present also. Odd terms > 1 are given in A324112.

Examples

			87 is a term, as 87 = 3*29, A324054(3-1) = 4, A324054(29-1) = 156, and A324108(87) = 4*156 = 624 = A324054(87-1).
		

Crossrefs

Programs

  • PARI
    A000265(n) = (n/2^valuation(n, 2));
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i,1]^f[i,2])-1)); };
    isA324111(n) = ((1!=omega(n))&&(1!=omega(A000265(n)))&&(A324054(n-1)==A324108(n)));
    for(n=1,2^20,if(isA324111(n), print1(n,", ")))
Showing 1-2 of 2 results.