cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324158 Expansion of Sum_{k>=1} x^k / (1 - k * x^k)^k.

Original entry on oeis.org

1, 2, 2, 6, 2, 23, 2, 50, 56, 107, 2, 660, 2, 499, 1592, 2370, 2, 8246, 2, 18557, 21786, 11387, 2, 175198, 43752, 53419, 298892, 487762, 2, 1891098, 2, 2552066, 3905222, 1114403, 3785462, 29081597, 2, 4981099, 48376512, 95510772, 2, 218764940, 2, 346411232, 770590352
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[x^k/(1 - k x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(n/d)^(d - 1) Binomial[n/d + d - 2, d - 1], {d, Divisors[n]}], {n, 1, 45}]
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(d-1) * binomial(n/d+d-2, d-1)); \\ Michel Marcus, Sep 02 2019
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, x^k/(1-k*x^k)^k)) \\ Seiichi Manyama, Sep 03 2019

Formula

a(n) = Sum_{d|n} (n/d)^(d-1) * binomial(n/d+d-2,d-1).
a(p) = 2, where p is prime.