A324162 Number T(n,k) of set partitions of [n] where each subset is again partitioned into k nonempty subsets; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 1, 0, 5, 3, 1, 0, 15, 10, 6, 1, 0, 52, 45, 25, 10, 1, 0, 203, 241, 100, 65, 15, 1, 0, 877, 1428, 511, 350, 140, 21, 1, 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1, 0, 21147, 67035, 29765, 9030, 6951, 2646, 462, 36, 1, 0, 115975, 524926, 250200, 60355, 42651, 22827, 5880, 750, 45, 1
Offset: 0
Examples
T(4,2) = 10: 123/4, 124/3, 12/34, 134/2, 13/24, 14/23, 1/234, 1/2|3/4, 1/3|2/4, 1/4|2/3. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 1; 0, 5, 3, 1; 0, 15, 10, 6, 1; 0, 52, 45, 25, 10, 1; 0, 203, 241, 100, 65, 15, 1; 0, 877, 1428, 511, 350, 140, 21, 1; 0, 4140, 9325, 3626, 1736, 1050, 266, 28, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, add( T(n-j, k)*binomial(n-1, j-1)*Stirling2(j, k), j=k..n))) end: seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
nmax = 10; col[k_] := col[k] = CoefficientList[Exp[(Exp[x]-1)^k/k!] + O[x]^(nmax+1), x][[k+1;;]] Range[k, nmax]!; T[n_, k_] := Which[k == n, 1, k == 0, 0, True, col[k][[n-k+1]]]; Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 26 2020 *)
-
PARI
T(n, k) = if(k==0, 0^n, sum(j=0, n\k, (k*j)!*stirling(n, k*j, 2)/(k!^j*j!))); \\ Seiichi Manyama, May 07 2022
Formula
E.g.f. of column k>0: exp((exp(x)-1)^k/k!).
Sum_{k=1..n} k * T(n,k) = A325929(n).
T(n,k) = Sum_{j=0..floor(n/k)} (k*j)! * Stirling2(n,k*j)/(k!^j * j!) for k > 0. - Seiichi Manyama, May 07 2022