cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324177 Integers k such that floor(sqrt(k)) + floor(sqrt(k/4)) divides k.

Original entry on oeis.org

1, 2, 3, 6, 12, 18, 24, 28, 35, 36, 45, 50, 60, 72, 91, 105, 120, 128, 144, 162, 171, 190, 210, 242, 264, 288, 300, 324, 351, 364, 392, 420, 465, 495, 528, 544, 576, 612, 629, 666, 702, 760, 798, 840, 860, 900, 945, 966, 1012, 1056, 1127, 1173, 1224, 1248, 1296
Offset: 1

Views

Author

Jinyuan Wang, Mar 09 2019

Keywords

Comments

k = 36*j^2 is a term for j > 0.
Other infinite families of terms are 36*j^2-29*j+5, 36*j^2-21*j+3, 36*j^2-12*j, 36*j^2-8*j,36*j^2+9*j,36*j^2+13*j+1,36*j^2+22*j+2, and 36*j^2+30*j+6. These cover all terms <= 4676406 except 35. - Robert Israel, Jan 24 2020

Crossrefs

Programs

  • Maple
    filter:= n -> n mod (floor(sqrt(n))+floor(sqrt(n/4))) = 0:
    select(filter, [$1..10000]); # Robert Israel, Jan 24 2020
  • Mathematica
    Select[Range[1296], Mod[#, Floor@ Sqrt@ # + Floor@ Sqrt[#/4]] == 0 &] (* Giovanni Resta, Apr 05 2019 *)
  • PARI
    is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/4))) == 0;