cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A324174 Integers k such that 2*floor(sqrt(k)) divides k.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 30, 36, 48, 56, 64, 80, 90, 100, 120, 132, 144, 168, 182, 196, 224, 240, 256, 288, 306, 324, 360, 380, 400, 440, 462, 484, 528, 552, 576, 624, 650, 676, 728, 756, 784, 840, 870, 900, 960, 992, 1024, 1088, 1122, 1156, 1224, 1260, 1296
Offset: 1

Views

Author

Jinyuan Wang, Mar 09 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 1000 ], Mod[ #, 2*Floor[ Sqrt[ # ]//N ] ]==0& ]
    LinearRecurrence[{1,0,2,-2,0,-1,1},{2,4,8,12,16,24,30},70] (* Harvey P. Dale, Dec 11 2022 *)
  • PARI
    is(n) = n%(2*sqrtint(n)) == 0;

Formula

For k >= 1, a(3k-2) = 4k^2 - 2k, a(3k-1) = 4k^2 and a(3k) = 4k^2 + 4k.

A324178 Integers k such that floor(sqrt(k)) + floor(sqrt(k/5)) divides k.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 24, 28, 35, 40, 45, 50, 60, 66, 77, 91, 112, 128, 153, 190, 200, 220, 231, 276, 312, 338, 378, 406, 435, 450, 480, 496, 512, 561, 578, 648, 703, 722, 741, 780, 800, 840, 882, 903, 946, 968, 990, 1058, 1152, 1176, 1250, 1300, 1352, 1378
Offset: 1

Views

Author

Jinyuan Wang, Mar 09 2019

Keywords

Comments

This sequence is infinite for the same reason that A324175 is: if x > y satisfies x^2 - 5*y^2 = -1 (x=A075796(j), y=A007805(j-1), j>0), then x < 5*y. Let k = 5*y^2 + m. By the pigeonhole principle there exists a number m belonging to [0, 2*x - 1] such that x + y | 5*y^2 + m, so such a k is a term.

Crossrefs

Programs

  • Mathematica
    Select[Range[1378], Mod[#, Floor@ Sqrt@ # + Floor@ Sqrt[#/5]] == 0 &] (* Giovanni Resta, Apr 05 2019 *)
  • PARI
    is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/5))) == 0;
Showing 1-2 of 2 results.