A324177 Integers k such that floor(sqrt(k)) + floor(sqrt(k/4)) divides k.
1, 2, 3, 6, 12, 18, 24, 28, 35, 36, 45, 50, 60, 72, 91, 105, 120, 128, 144, 162, 171, 190, 210, 242, 264, 288, 300, 324, 351, 364, 392, 420, 465, 495, 528, 544, 576, 612, 629, 666, 702, 760, 798, 840, 860, 900, 945, 966, 1012, 1056, 1127, 1173, 1224, 1248, 1296
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..3200
Programs
-
Maple
filter:= n -> n mod (floor(sqrt(n))+floor(sqrt(n/4))) = 0: select(filter, [$1..10000]); # Robert Israel, Jan 24 2020
-
Mathematica
Select[Range[1296], Mod[#, Floor@ Sqrt@ # + Floor@ Sqrt[#/4]] == 0 &] (* Giovanni Resta, Apr 05 2019 *)
-
PARI
is(n) = n%(floor(sqrt(n)) + floor(sqrt(n/4))) == 0;
Comments