cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A324116 a(n) = A002487(1+A323247(n)) = A324288(A156552(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 4, 1, 2, 5, 5, 1, 3, 1, 6, 7, 8, 1, 2, 1, 4, 9, 7, 1, 13, 7, 8, 5, 5, 1, 3, 1, 7, 11, 9, 10, 12, 1, 10, 13, 18, 1, 4, 1, 6, 8, 11, 1, 12, 9, 2, 15, 7, 1, 11, 13, 23, 17, 12, 1, 19, 1, 13, 11, 13, 16, 5, 1, 8, 19, 3, 1, 13, 1, 14, 7, 9, 13, 6, 1, 17, 10, 15, 1, 26, 19, 16, 21, 28, 1, 18, 17, 10, 23, 17, 22, 23, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2019

Keywords

Comments

Like A323902, this also has quite a moderate growth rate, even though a certain subset of terms of A156552 soon grow quite big.

Crossrefs

Programs

  • PARI
    A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); }; \\ So we use this one, modified from the one given in A002487
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A324288(n) = A002487(1+A005187(n));
    A324116(n) = A324288(A156552(n));

Formula

a(n) = A002487(1+A323247(n)) = A324288(A156552(n)).
a(p) = 1 for all primes p.

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A324294 a(n) = A002487(1+sigma(n)).

Original entry on oeis.org

1, 1, 3, 1, 3, 5, 4, 1, 3, 7, 5, 7, 4, 7, 7, 1, 7, 3, 8, 13, 6, 11, 7, 9, 1, 13, 11, 10, 5, 15, 6, 1, 9, 11, 9, 7, 10, 9, 10, 19, 13, 11, 12, 21, 13, 15, 9, 11, 7, 9, 15, 16, 11, 13, 15, 13, 14, 19, 9, 29, 6, 11, 18, 1, 21, 19, 14, 7, 11, 19, 15, 9, 18, 17, 11, 22, 11, 29, 14, 25, 9, 7, 21, 16, 19, 17, 13, 31, 19, 29, 13, 29, 8, 19, 13, 13, 16
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A002487[m_] := Module[{a = 1, b = 0, n = m}, While[n > 0, If[OddQ[n], b = a + b, a = a + b]; n = Floor[n/2]]; b];
    a[n_] := A002487[1 + DivisorSigma[1, n]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 11 2023 *)
  • PARI
    A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); };
    A324294(n) = A002487(1+sigma(n));
    
  • Python
    from functools import reduce
    from sympy import divisor_sigma
    def A324294(n): return reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(divisor_sigma(n)+1)[-1:1:-1],(1,0))[1] # Chai Wah Wu, Jun 19 2022

Formula

a(n) = A002487(1+sigma(n)).
a(2^n) = 1 for all n >= 0, but also for some other numbers, e.g., a(25) = 1.

A324287 a(n) = A002487(A005187(n)).

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 3, 5, 4, 1, 4, 7, 5, 7, 7, 5, 5, 1, 5, 9, 7, 10, 11, 8, 7, 9, 9, 7, 13, 8, 3, 10, 6, 1, 6, 11, 9, 13, 15, 11, 10, 13, 14, 11, 21, 13, 5, 17, 9, 11, 11, 9, 19, 12, 5, 18, 19, 11, 3, 13, 7, 18, 15, 4, 7, 1, 7, 13, 11, 16, 19, 14, 13, 17, 19, 15, 29, 18, 7, 24, 13, 16, 17, 14, 30, 19, 8, 29, 31, 18, 5, 22, 12, 31, 26, 7
Offset: 0

Views

Author

Antti Karttunen, Feb 20 2019

Keywords

Comments

The motivation for this kind of sequence was a question: what kind of simply defined non-injective functions f exist such that this sequence can be defined as their function, e.g., as a(n) = g(f(n)), where g is a nontrivial integer-valued function? The same question can also be asked about A324288, A324337 and A324338. Note that A005187, A283477 and A006068 used in their definitions are all injections. Of course, A324377(n) = A000265(A005187(n)) fills the bill as A002487(n) = A002487(A000265(n)), but are there any less obvious solutions? - Antti Karttunen, Feb 28 2019

Crossrefs

Programs

  • PARI
    A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); }; \\ Modified from the one given in A002487, sign not actually needed here.
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A324287(n) = A002487(A005187(n));
    
  • Python
    from functools import reduce
    def A324287(n): return sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin((n<<1)-n.bit_count())[-1:2:-1],(1,0))) if n else 0 # Chai Wah Wu, May 05 2023

Formula

a(n) = A002487(A005187(n)).
a(n) = A324286(A283477(n)).
a(n) = A002487(A324377(n)).

A324338 a(n) = A002487(1+A006068(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 2, 1, 4, 5, 3, 4, 3, 2, 5, 1, 5, 7, 4, 7, 5, 3, 8, 5, 4, 3, 7, 2, 7, 8, 5, 1, 6, 9, 5, 10, 7, 4, 11, 9, 7, 5, 12, 3, 11, 13, 8, 6, 5, 4, 9, 3, 10, 11, 7, 2, 9, 12, 7, 11, 8, 5, 13, 1, 7, 11, 6, 13, 9, 5, 14, 13, 10, 7, 17, 4, 15, 18, 11, 11, 9, 7, 16, 5, 17, 19, 12, 3, 14, 19, 11, 18, 13, 8, 21, 7, 6, 5, 11, 4, 13, 14, 9, 3, 13
Offset: 0

Views

Author

Antti Karttunen, Feb 23 2019

Keywords

Comments

Like in A324337, a few terms preceding each 2^k-th term (here always 1) seem to consist of a batch of nearby Fibonacci numbers (A000045) in some order. For example, a(65533) = 987, a(65534) = 610 and a(65535) = 1597.
For all n > 0 A324338(n)/A324337(n) constitutes an enumeration system of all positive rationals. For all n > 0 A324338(n) + A324337(n) = A071585(n). - Yosu Yurramendi, Oct 22 2019

Crossrefs

Programs

Formula

a(n) = A002487(1+A006068(n)).
a(2^n) = 1 for all n >= 0.
From Yosu Yurramendi, Oct 22 2019: (Start)
a(2^m+2^(m-1)+k) = A324337(2^m+ k), m > 0, 0 <= k < 2^(m-1)
a(2^m+ k) = A324337(2^m+2^(m-1)+k), m > 0, 0 <= k < 2^(m-1). (End)
a(n) = A324337(A063946(n)), n > 0. Yosu Yurramendi, Nov 04 2019
a(n) = A002487(A233279(n)), n > 0. Yosu Yurramendi, Nov 08 2019
From Yosu Yurramendi, Nov 28 2019: (Start)
a(2^(m+1)+k) - a(2^m+k) = A324337(k), m >= 0, 0 <= k < 2^m.
a(A059893(2^(m+1)+A000069(k+1))) - a(A059893(2^m+A000069(k+1))) = A071585(k), m >= 1, 0 <= k < 2^(m-1).
a(A059893(2^m+ A001969(k+1))) = A071585(k), m >= 0, 0 <= k < 2^(m-1). (End)
From Yosu Yurramendi, Nov 29 2019: (Start)
For n > 0:
A324338(n) + A324337(n) = A071585(n).
A324338(2*A001969(n) )-A324337(2*A001969(n) ) = A071585(n-1)
A324338(2*A001969(n)+1)-A324337(2*A001969(n)+1) = -A324337(n-1)
A324338(2*A000069(n) )-A324337(2*A000069(n) ) = -A071585(n-1)
A324338(2*A000069(n)+1)-A324337(2*A000069(n)+1) = A324338(n-1) (End)
a(n) = A002487(A233279(n)). Yosu Yurramendi, Dec 27 2019

A324378 a(n) = A000265(1+A005187(n)).

Original entry on oeis.org

1, 1, 1, 5, 1, 9, 11, 3, 1, 17, 19, 5, 23, 3, 13, 27, 1, 33, 35, 9, 39, 5, 21, 43, 47, 3, 25, 51, 27, 55, 57, 29, 1, 65, 67, 17, 71, 9, 37, 75, 79, 5, 41, 83, 43, 87, 89, 45, 95, 3, 49, 99, 51, 103, 105, 53, 55, 111, 113, 57, 117, 59, 15, 121, 1, 129, 131, 33, 135, 17, 69, 139, 143, 9, 73, 147, 75, 151, 153, 77, 159, 5, 81
Offset: 0

Views

Author

Antti Karttunen, Feb 28 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000265(1+A005187(n)).
A002487(a(n)) = A324288(n).
a(2^n) = 1 for all n >= 0.
Showing 1-6 of 6 results.