A324297 Positive integers k that are the product of two integers ending with 6.
36, 96, 156, 216, 256, 276, 336, 396, 416, 456, 516, 576, 636, 676, 696, 736, 756, 816, 876, 896, 936, 996, 1056, 1116, 1176, 1196, 1216, 1236, 1296, 1356, 1376, 1416, 1456, 1476, 1536, 1596, 1656, 1696, 1716, 1776, 1836, 1856, 1896, 1956, 1976, 2016, 2076, 2116
Offset: 1
Examples
36 = 6*6, 96 = 6*16, 216 = 6*36, 256 = 16*16, 276 = 6*46, ...
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[a],AppendTo[a,10*n+6]]]]; a
-
PARI
isok6(n) = (n%10) == 6; \\ A017341 isok(n) = {if (isok6(n), my(d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1)));); return (0);} \\ Michel Marcus, Apr 14 2019
-
Python
def aupto(lim): return sorted(set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10))) print(aupto(2117)) # Michael S. Branicky, Aug 18 2021
Formula
Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - Stefano Spezia, Aug 18 2021
Comments