cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324298 Positive integers k such that 10*k+6 is equal to the product of two integers ending with 6 (A324297).

Original entry on oeis.org

3, 9, 15, 21, 25, 27, 33, 39, 41, 45, 51, 57, 63, 67, 69, 73, 75, 81, 87, 89, 93, 99, 105, 111, 117, 119, 121, 123, 129, 135, 137, 141, 145, 147, 153, 159, 165, 169, 171, 177, 183, 185, 189, 195, 197, 201, 207, 211, 213, 217, 219, 223, 225, 231, 233, 237, 243, 249
Offset: 1

Views

Author

Stefano Spezia, Mar 16 2019

Keywords

Comments

All the terms of this sequence are odd.
Why? If an integer 10*k+6 = (10*a+6) * (10*b+6), then k = 10*a*b + 6*(a+b) + 3, so k is odd. - Bernard Schott, May 13 2019

Examples

			145 is a term because 26*56 = 1456 = 145*10 + 6. - _Bernard Schott_, May 13 2019
		

Crossrefs

Cf. A017341, A053742 (ending with 5), A324297, A337856, A346389.

Programs

  • Mathematica
    a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[10*a+6],AppendTo[a,n]]]]; a
  • PARI
    isok6(n) = (n%10) == 6; \\ A017341
    isok(k) = {my(n=10*k+6, d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1))); return (0);} \\ Michel Marcus, Apr 14 2019
    
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(6, 10*lim//6+2, 10) for b in range(a, 10*lim//a+2, 10) if a*b//10 <= lim))
    print(aupto(249)) # Michael S. Branicky, Aug 21 2021

Formula

a(n) = (A324297(n) - 6)/10.
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since a(n) = (A324297(n) - 6)/10 and lim_{n->infinity} A324297(n)/A324297(n-1) = 1. - Stefano Spezia, Aug 21 2021