cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A016873 a(n) = 5*n + 2.

Original entry on oeis.org

2, 7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132, 137, 142, 147, 152, 157, 162, 167, 172, 177, 182, 187, 192, 197, 202, 207, 212, 217, 222, 227, 232, 237, 242, 247, 252, 257, 262, 267, 272, 277
Offset: 0

Views

Author

Keywords

Comments

Numbers ending in 2 or 7. - Lekraj Beedassy, Jul 08 2006
For n > 2, also the number of (not necessarily maximal) cliques in the n-gear graph. - Eric W. Weisstein, Nov 29 2017
Also, positive integers k such that 10*k+5 is equal to the product of two integers ending with 5. Proof: if 10*k+5 = (10*a+5) * (10*b+5), then k = 10*a*b + 5*(a+b) + 2 = 5 * (a + b + 2*a*b) + 2, of the form 5m + 2. So, 262 is a term because 2625 = 35 * 75. - Bernard Schott, May 15 2019
Numbers k such that 2^x + 3^x == 0 mod 31 and 2^x + 3^x == 0 mod 11 with x = 6*k+3. - Pedro Caceres, May 18 2022

Crossrefs

Cf. A053742 (product of two integers ending with 5).
Cf. A324298 (product of two integers ending with 6).

Programs

Formula

a(n) = 10*n - a(n-1) - 1 (with a(0)=2). - Vincenzo Librandi, Nov 20 2010
G.f.: (2+3*x)/(1-x)^2. - Colin Barker, Jan 08 2012
E.g.f.: exp(x)*(2 + 5*x). - Stefano Spezia, Mar 21 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(2-2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) - log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A324297 Positive integers k that are the product of two integers ending with 6.

Original entry on oeis.org

36, 96, 156, 216, 256, 276, 336, 396, 416, 456, 516, 576, 636, 676, 696, 736, 756, 816, 876, 896, 936, 996, 1056, 1116, 1176, 1196, 1216, 1236, 1296, 1356, 1376, 1416, 1456, 1476, 1536, 1596, 1656, 1696, 1716, 1776, 1836, 1856, 1896, 1956, 1976, 2016, 2076, 2116
Offset: 1

Views

Author

Stefano Spezia, Mar 16 2019

Keywords

Comments

All the terms end with 6 (A017341).

Examples

			36 = 6*6, 96 = 6*16, 216 = 6*36, 256 = 16*16, 276 = 6*46, ...
		

Crossrefs

Cf. A000400, A017341 (supersequence), A324298, A053742 (ending with 5).

Programs

  • Mathematica
    a={}; For[n=0,n<=250,n++,For[k=0,k<=n,k++,If[Mod[10*n+6,10*k+6]==0 && Mod[(10*n+6)/(10*k+6),10]==6 && 10*n+6>Max[a],AppendTo[a,10*n+6]]]]; a
  • PARI
    isok6(n) = (n%10) == 6; \\ A017341
    isok(n) = {if (isok6(n), my(d=divisors(n)); fordiv(n, d, if (isok6(d) && isok6(n/d), return(1)));); return (0);} \\ Michel Marcus, Apr 14 2019
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2117)) # Michael S. Branicky, Aug 18 2021

Formula

Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since it can be proved that a(n) = (sqrt(a(n-1)) + g(n-1))^2 where [g(n): n > 1] is a bounded sequence of positive real numbers. - Stefano Spezia, Aug 18 2021

A346389 a(n) is the number of proper divisors of A324297(n) ending with 6.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 4, 2, 1, 2, 2, 3, 3, 2, 2, 4, 2, 5, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 4, 3, 4, 2, 5, 3, 3, 2, 2, 2, 2, 7, 2, 1, 2, 2, 3, 2, 3, 2, 2, 5, 3, 6, 3, 3, 2, 2, 2, 5, 2, 2, 3, 4, 3, 5, 2, 5, 4, 3, 2, 3, 6, 2, 2, 2, 6, 2, 2, 3, 2, 2, 3, 7
Offset: 1

Views

Author

Stefano Spezia, Jul 15 2021

Keywords

Examples

			a(12) = 4 since there are 4 proper divisors of A324297(12) = 576 ending with 6: 6, 16, 36 and 96.
		

Crossrefs

Cf. A017341, A032741, A324297, A324298, A337856, A346388 (ending with 5), A346392.

Programs

  • Mathematica
    b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+6]==0 && Mod[(10*n+6)/(10*k+6), 10]==6 && 10*n+6>Max[b], AppendTo[b, 10*n+6]]]]; (* A324297 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#,10]==6&)], -1]]]]; a

Formula

a(n) = A346392(A324297(n)).

A346508 Positive integers k such that 10*k+1 is equal to the product of two integers greater than 1 and ending with 1 (A346507).

Original entry on oeis.org

12, 23, 34, 44, 45, 56, 65, 67, 78, 86, 89, 96, 100, 107, 111, 122, 127, 128, 133, 144, 149, 155, 158, 166, 168, 170, 177, 188, 189, 191, 199, 209, 210, 212, 220, 221, 232, 233, 243, 250, 251, 254, 260, 265, 275, 276, 282, 287, 291, 296, 298, 309, 311, 313, 317
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Examples

			107 is a term because 21*51 = 1071 = 107*10 + 1.
		

Crossrefs

Cf. A016873 (ending with 5), A017281, A324298 (ending with 6), A346507, A346509, A346510.

Programs

  • Mathematica
    a={}; For[n=1, n<=350, n++, For[k=1, kMax[10a+1], AppendTo[a, n]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(11, 10*lim//11+2, 10) for b in range(a, 10*lim//a+2, 10) if a*b//10 <= lim))
    print(aupto(318)) # Michael S. Branicky, Aug 21 2021

Formula

a(n) = (A346507(n) - 1)/10.
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 1.
The conjecture is true since a(n) = (A346507(n) - 1)/10 and lim_{n->infinity} A346507(n)/A346507(n-1) = 1. - Stefano Spezia, Aug 21 2021

A346951 Positive integers k such that 10*k+9 is equal to the product of two integers ending with 3 (A346950).

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 16, 18, 21, 24, 27, 29, 30, 33, 36, 39, 42, 45, 48, 51, 52, 54, 55, 57, 60, 63, 66, 68, 69, 72, 75, 78, 81, 84, 87, 90, 93, 94, 96, 98, 99, 102, 105, 107, 108, 111, 114, 117, 120, 121, 123, 126, 129, 132, 133, 135, 138, 141, 144, 146, 147, 150
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Examples

			15 is a term because 3*53 = 159 = 15*10 + 9.
		

Crossrefs

Cf. A016873 (ending with 5), A017377, A324298 (ending with 6), A346950, A346952, A346953.

Programs

  • Mathematica
    a={}; For[n=0, n<=150, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3&& 10*n+9>Max[10a+9], AppendTo[a, n]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(3, 10*lim//3+4, 10) for b in range(a, 10*lim//a+4, 10) if a*b//10 <= lim))
    print(aupto(150)) # Michael S. Branicky, Aug 11 2021

Formula

a(n) = (A346950(n) - 9)/10.
Lim_{n->infinity} a(n)/a(n-1) = 1.

A347254 Positive integers k such that 10*k+6 is equal to the product of two integers ending with 4 (A347253).

Original entry on oeis.org

1, 5, 9, 13, 17, 19, 21, 25, 29, 33, 37, 41, 45, 47, 49, 53, 57, 61, 65, 69, 73, 75, 77, 81, 85, 89, 93, 97, 101, 103, 105, 109, 113, 115, 117, 121, 125, 129, 131, 133, 137, 141, 145, 149, 153, 157, 159, 161, 165, 169, 173, 177, 181, 183, 185, 187, 189, 193, 197
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Comments

Since an integer 10*k + 6 = (10*a + 4)*(10*b + 4) implies that k = 10*a*b + 4*(a + b) + 1, all the terms of this sequence are odd.

Examples

			13 is a term because 4*34 = 136 = 13*10 + 6.
		

Crossrefs

Cf. A016873 (ending with 5), A017341, A324298 (ending with 6), A346951 (ending with 3), A347253.

Programs

  • Mathematica
    a={}; For[n=0, n<=200, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && n>Max[a], AppendTo[a, n]]]]; a
  • PARI
    isok(k) =  my(x=10*k+6); sumdiv(x, d, (Mod(d, 10)==4) && Mod(x/d, 10)==4); \\ Michel Marcus, Oct 04 2021
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(4, 10*lim//4+3, 10) for b in range(a, 10*lim//a+3, 10) if a*b//10 <= lim))
    print(aupto(197)) # Michael S. Branicky, Aug 24 2021
    

Formula

a(n) = (A347253(n) - 6)/10.
Lim_{n->infinity} a(n)/a(n-1) = 1.
Showing 1-6 of 6 results.