cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A346950 Positive integers k that are the product of two integers ending with 3.

Original entry on oeis.org

9, 39, 69, 99, 129, 159, 169, 189, 219, 249, 279, 299, 309, 339, 369, 399, 429, 459, 489, 519, 529, 549, 559, 579, 609, 639, 669, 689, 699, 729, 759, 789, 819, 849, 879, 909, 939, 949, 969, 989, 999, 1029, 1059, 1079, 1089, 1119, 1149, 1179, 1209, 1219, 1239, 1269
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

All the terms end with 9 (A017377).

Examples

			9 = 3*3, 39 = 3*13, 69 = 3*23, 99 = 3*33, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63, ...
		

Crossrefs

Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346951, A346952, A346953.

Programs

  • Mathematica
    a={}; For[n=0, n<=250, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3&& 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(1270)) # Michael S. Branicky, Aug 08 2021

Formula

Limit_{n->oo} a(n)/a(n-1) = 1.

A346953 a(n) is the number of divisors of A346950(n) ending with 3.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

a(n) = 1 if A346950(n) = k^2 where k is either a prime ending with 3 or the product of a prime ending with 7 and a prime ending with 9. - Robert Israel, Nov 03 2024

Examples

			a(17) = 4 since there are 4 divisors of A346950(17) = 429 ending with 3: 3, 13, 33 and 143.
		

Crossrefs

Cf. A000005, A017377, A346388 (ending with 5), A346389 (ending with 6), A346950, A346951, A346952.

Programs

  • Maple
    N:= 10000: # for a(1) .. a(M) where the last term of A346950 less than N is A346950(M)
    S:= {}:
    for n from 3 to floor(sqrt(N)) by 10 do
      S:= S union map(`*`, {seq(i,i= n .. floor(N/n), 10)},n)
    od:
    S:= sort(convert(S,list)):
    map(t -> nops(select(t -> t mod 10 = 3, numtheory:-divisors(t))), S); # Robert Israel, Nov 03 2024
  • Mathematica
    b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[b], AppendTo[b, 10*n+9]]]]; (* A346950 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==3&)]]]]]; a
  • Python
    from sympy import divisors
    def f(n): return sum(d%10 == 3 for d in divisors(n)[1:-1])
    def A346950upto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
    print(list(map(f, A346950upto(2129)))) # Michael S. Branicky, Aug 11 2021

A347254 Positive integers k such that 10*k+6 is equal to the product of two integers ending with 4 (A347253).

Original entry on oeis.org

1, 5, 9, 13, 17, 19, 21, 25, 29, 33, 37, 41, 45, 47, 49, 53, 57, 61, 65, 69, 73, 75, 77, 81, 85, 89, 93, 97, 101, 103, 105, 109, 113, 115, 117, 121, 125, 129, 131, 133, 137, 141, 145, 149, 153, 157, 159, 161, 165, 169, 173, 177, 181, 183, 185, 187, 189, 193, 197
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Comments

Since an integer 10*k + 6 = (10*a + 4)*(10*b + 4) implies that k = 10*a*b + 4*(a + b) + 1, all the terms of this sequence are odd.

Examples

			13 is a term because 4*34 = 136 = 13*10 + 6.
		

Crossrefs

Cf. A016873 (ending with 5), A017341, A324298 (ending with 6), A346951 (ending with 3), A347253.

Programs

  • Mathematica
    a={}; For[n=0, n<=200, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && n>Max[a], AppendTo[a, n]]]]; a
  • PARI
    isok(k) =  my(x=10*k+6); sumdiv(x, d, (Mod(d, 10)==4) && Mod(x/d, 10)==4); \\ Michel Marcus, Oct 04 2021
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(4, 10*lim//4+3, 10) for b in range(a, 10*lim//a+3, 10) if a*b//10 <= lim))
    print(aupto(197)) # Michael S. Branicky, Aug 24 2021
    

Formula

a(n) = (A347253(n) - 6)/10.
Lim_{n->infinity} a(n)/a(n-1) = 1.
Showing 1-3 of 3 results.