cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A346951 Positive integers k such that 10*k+9 is equal to the product of two integers ending with 3 (A346950).

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 16, 18, 21, 24, 27, 29, 30, 33, 36, 39, 42, 45, 48, 51, 52, 54, 55, 57, 60, 63, 66, 68, 69, 72, 75, 78, 81, 84, 87, 90, 93, 94, 96, 98, 99, 102, 105, 107, 108, 111, 114, 117, 120, 121, 123, 126, 129, 132, 133, 135, 138, 141, 144, 146, 147, 150
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Examples

			15 is a term because 3*53 = 159 = 15*10 + 9.
		

Crossrefs

Cf. A016873 (ending with 5), A017377, A324298 (ending with 6), A346950, A346952, A346953.

Programs

  • Mathematica
    a={}; For[n=0, n<=150, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3&& 10*n+9>Max[10a+9], AppendTo[a, n]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b//10 for a in range(3, 10*lim//3+4, 10) for b in range(a, 10*lim//a+4, 10) if a*b//10 <= lim))
    print(aupto(150)) # Michael S. Branicky, Aug 11 2021

Formula

a(n) = (A346950(n) - 9)/10.
Lim_{n->infinity} a(n)/a(n-1) = 1.

A346953 a(n) is the number of divisors of A346950(n) ending with 3.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

a(n) = 1 if A346950(n) = k^2 where k is either a prime ending with 3 or the product of a prime ending with 7 and a prime ending with 9. - Robert Israel, Nov 03 2024

Examples

			a(17) = 4 since there are 4 divisors of A346950(17) = 429 ending with 3: 3, 13, 33 and 143.
		

Crossrefs

Cf. A000005, A017377, A346388 (ending with 5), A346389 (ending with 6), A346950, A346951, A346952.

Programs

  • Maple
    N:= 10000: # for a(1) .. a(M) where the last term of A346950 less than N is A346950(M)
    S:= {}:
    for n from 3 to floor(sqrt(N)) by 10 do
      S:= S union map(`*`, {seq(i,i= n .. floor(N/n), 10)},n)
    od:
    S:= sort(convert(S,list)):
    map(t -> nops(select(t -> t mod 10 = 3, numtheory:-divisors(t))), S); # Robert Israel, Nov 03 2024
  • Mathematica
    b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[b], AppendTo[b, 10*n+9]]]]; (* A346950 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==3&)]]]]]; a
  • Python
    from sympy import divisors
    def f(n): return sum(d%10 == 3 for d in divisors(n)[1:-1])
    def A346950upto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
    print(list(map(f, A346950upto(2129)))) # Michael S. Branicky, Aug 11 2021

A346952 Number of positive integers with n digits that are the product of two integers ending with 3.

Original entry on oeis.org

1, 3, 37, 398, 4303, 45765, 480740, 5005328, 51770770, 532790460, 5461696481, 55814395421, 568944166801, 5787517297675
Offset: 1

Views

Author

Stefano Spezia, Aug 08 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A346950.

Crossrefs

Cf. A017377, A052268, A346509 (ending with 1), A337855 (ending with 5), A337856 (ending with 6), A346950.

Programs

  • Mathematica
    Table[{lo,hi}={10^(n-1),10^n};Length@Select[Union@Flatten@Table[a*b,{a,3,Floor[hi/3],10},{b,a,Floor[hi/a],10}],lo<#Giorgos Kalogeropoulos, Aug 16 2021 *)
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 09 2021

Formula

a(n) < A052268(n).
Conjecture: Lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(6)-a(11) from Michael S. Branicky, Aug 09 2021
a(12)-a(14) from Martin Ehrenstein, Aug 22 2021

A347253 Positive integers that are the product of two integers ending with 4.

Original entry on oeis.org

16, 56, 96, 136, 176, 196, 216, 256, 296, 336, 376, 416, 456, 476, 496, 536, 576, 616, 656, 696, 736, 756, 776, 816, 856, 896, 936, 976, 1016, 1036, 1056, 1096, 1136, 1156, 1176, 1216, 1256, 1296, 1316, 1336, 1376, 1416, 1456, 1496, 1536, 1576, 1596, 1616, 1656
Offset: 1

Views

Author

Stefano Spezia, Aug 24 2021

Keywords

Examples

			16 = 4*4, 56 = 4*14, 96 = 4*24, 136 = 4*34, 176 = 4*44, 196 = 14*14, 216 = 4*54, ...
		

Crossrefs

Cf. A017341 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347254, A347255.

Programs

  • Mathematica
    a={}; For[n=0, n<=200, n++, For[k=0, k<=n, k++, If[Mod[10*n+6, 10*k+4]==0 && Mod[(10*n+6)/(10*k+4), 10]==4 && 10*n+6>Max[a], AppendTo[a, 10*n+6]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(4, lim//4+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(1660)) # Michael S. Branicky, Aug 24 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A348054 Positive integers that are the product of two integers ending with 7.

Original entry on oeis.org

49, 119, 189, 259, 289, 329, 399, 459, 469, 539, 609, 629, 679, 729, 749, 799, 819, 889, 959, 969, 999, 1029, 1099, 1139, 1169, 1239, 1269, 1309, 1369, 1379, 1449, 1479, 1519, 1539, 1589, 1649, 1659, 1729, 1739, 1799, 1809, 1819, 1869, 1939, 1989, 2009, 2079, 2109
Offset: 1

Views

Author

Stefano Spezia, Sep 26 2021

Keywords

Examples

			49 = 7*7, 119 = 7*17, 189 = 7*27, 259 = 7*37, 289 = 17*17, 329 = 7*47, 399 = 7*57, ...
		

Crossrefs

Cf. A017377 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348055.

Programs

  • Mathematica
    a={}; For[n=0, n<=210, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2110)) # Michael S. Branicky, Sep 26 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A348546 Number of positive integers with n digits that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.

Original entry on oeis.org

0, 0, 8, 129, 1771, 21802, 252793, 2826973, 30872783
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A348544.

Crossrefs

Programs

  • Mathematica
    Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[hi/3], 10}, {b, a, Floor[hi/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[hi/7], 10}, {b, a, Floor[hi/a], 10}]], lo<#
    				
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) & set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 22 2021

Formula

a(n) < A052268(n).
a(n) = A346952(n) + A348055(n) - A348547(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9) from Michael S. Branicky, Oct 22 2021

A348547 Number of positive integers with n digits and final digit 9 that are equal to the product of two integers ending with the same digit.

Original entry on oeis.org

1, 4, 49, 524, 5596, 58706, 608886, 6267854, 64180304, 654605898, 6656849267, 67539297095, 683989985496, 6916722312963, 69859080168037
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A348545.

Crossrefs

Programs

  • Mathematica
    Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Union[Union@Flatten@Table[a*b, {a, 3, Floor[hi/3], 10}, {b, a, Floor[hi/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[hi/7], 10}, {b, a, Floor[hi/a], 10}]], lo<#
    				
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) | set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 22 2021

Formula

a(n) < A052268(n).
a(n) = A346952(n) + A348055(n) - A348546(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9) from Michael S. Branicky, Oct 22 2021
a(10)-a(15) from Martin Ehrenstein, Nov 06 2021

A348544 Positive integers that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.

Original entry on oeis.org

189, 399, 459, 609, 729, 819, 969, 999, 1029, 1239, 1269, 1449, 1479, 1539, 1659, 1729, 1809, 1869, 1989, 2079, 2109, 2289, 2349, 2499, 2619, 2639, 2679, 2709, 2889, 2919, 3009, 3059, 3129, 3159, 3219, 3249, 3339, 3429, 3519, 3549, 3699, 3759, 3819, 3969, 4029
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

Intersection of A346950 and A348054.

Examples

			189 = 7*27 = 3*63, 399 = 3*133 = 7*57, 459 = 3*153 = 17*27, 609 = 3*203 = 7*87, ...
		

Crossrefs

Cf. A017377 (supersequence), A346950, A348054, A348546.

Programs

  • Mathematica
    max=4050; Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[max/3], 10}, {b, a, Floor[max/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[max/7], 10}, {b, a, Floor[max/a], 10}]], 0<#
    				
  • PARI
    isok(m) = my(ok3=0, ok7=0); fordiv(m, d, if (((d % 10) == 3) && ((m/d % 10) == 3), ok3++); if (((d % 10) == 7) && ((m/d % 10) == 7), ok7++); if (ok3 && ok7, return(1))); \\ Michel Marcus, Oct 22 2021
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) & set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(4029)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A348545 Positive integers with final digit 9 that are equal to the product of two integers ending with the same digit.

Original entry on oeis.org

9, 39, 49, 69, 99, 119, 129, 159, 169, 189, 219, 249, 259, 279, 289, 299, 309, 329, 339, 369, 399, 429, 459, 469, 489, 519, 529, 539, 549, 559, 579, 609, 629, 639, 669, 679, 689, 699, 729, 749, 759, 789, 799, 819, 849, 879, 889, 909, 939, 949, 959, 969, 989, 999
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

Union of A346950 and A348054.

Examples

			9 = 3*3, 39 = 3*13, 49 = 7*7, 69 = 3*23, 99 = 3*33, 119 = 7*17, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63 = 7*27, ...
		

Crossrefs

Cf. A017377 (supersequence), A346950, A348054, A348547.

Programs

  • Mathematica
    a={}; For[n=0, n<=100, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[a] || Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • PARI
    isok(m) = ((m%10) == 9) && sumdiv(m, d, (d % 10) == (m/d % 10)); \\ Michel Marcus, Oct 22 2021
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) | set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(999)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.

A348548 Positive integers that are the product of two integers ending with 8.

Original entry on oeis.org

64, 144, 224, 304, 324, 384, 464, 504, 544, 624, 684, 704, 784, 864, 944, 1024, 1044, 1064, 1104, 1184, 1224, 1264, 1344, 1404, 1424, 1444, 1504, 1584, 1624, 1664, 1744, 1764, 1824, 1904, 1944, 1984, 2064, 2124, 2144, 2184, 2204, 2224, 2304, 2384, 2464, 2484, 2544
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Examples

			64 = 8*8, 144 = 8*18, 224 = 8*28, 304 = 8*38, 324 = 18*18, 384 = 8*48, ...
		

Crossrefs

Cf. A017317 (supersequence), A053742 (ending with 5), A139245 (ending with 2), A324297 (ending with 6), A346950 (ending with 3), A347253 (ending with 4), A348054 (ending with 7), A348549.

Programs

  • Mathematica
    a={}; For[n=0, n<=260, n++, For[k=0, k<=n, k++, If[Mod[10*n+4, 10*k+8]==0 && Mod[(10*n+4)/(10*k+8), 10]==8 && 10*n+4>Max[a], AppendTo[a, 10*n+4]]]]; a
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(8, lim//8+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(2550)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.
Showing 1-10 of 10 results.