cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A348547 Number of positive integers with n digits and final digit 9 that are equal to the product of two integers ending with the same digit.

Original entry on oeis.org

1, 4, 49, 524, 5596, 58706, 608886, 6267854, 64180304, 654605898, 6656849267, 67539297095, 683989985496, 6916722312963, 69859080168037
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A348545.

Crossrefs

Programs

  • Mathematica
    Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Union[Union@Flatten@Table[a*b, {a, 3, Floor[hi/3], 10}, {b, a, Floor[hi/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[hi/7], 10}, {b, a, Floor[hi/a], 10}]], lo<#
    				
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) | set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 22 2021

Formula

a(n) < A052268(n).
a(n) = A346952(n) + A348055(n) - A348546(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9) from Michael S. Branicky, Oct 22 2021
a(10)-a(15) from Martin Ehrenstein, Nov 06 2021
Showing 1-1 of 1 results.