cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A348546 Number of positive integers with n digits that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.

Original entry on oeis.org

0, 0, 8, 129, 1771, 21802, 252793, 2826973, 30872783
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A348544.

Crossrefs

Programs

  • Mathematica
    Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[hi/3], 10}, {b, a, Floor[hi/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[hi/7], 10}, {b, a, Floor[hi/a], 10}]], lo<#
    				
  • Python
    def a(n):
      lo, hi = 10**(n-1), 10**n
      return len(set(a*b for a in range(3, hi//3+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) & set(a*b for a in range(7, hi//7+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
    print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Oct 22 2021

Formula

a(n) < A052268(n).
a(n) = A346952(n) + A348055(n) - A348547(n).
Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.

Extensions

a(9) from Michael S. Branicky, Oct 22 2021

A348545 Positive integers with final digit 9 that are equal to the product of two integers ending with the same digit.

Original entry on oeis.org

9, 39, 49, 69, 99, 119, 129, 159, 169, 189, 219, 249, 259, 279, 289, 299, 309, 329, 339, 369, 399, 429, 459, 469, 489, 519, 529, 539, 549, 559, 579, 609, 629, 639, 669, 679, 689, 699, 729, 749, 759, 789, 799, 819, 849, 879, 889, 909, 939, 949, 959, 969, 989, 999
Offset: 1

Views

Author

Stefano Spezia, Oct 22 2021

Keywords

Comments

Union of A346950 and A348054.

Examples

			9 = 3*3, 39 = 3*13, 49 = 7*7, 69 = 3*23, 99 = 3*33, 119 = 7*17, 129 = 3*43, 159 = 3*53, 169 = 13*13, 189 = 3*63 = 7*27, ...
		

Crossrefs

Cf. A017377 (supersequence), A346950, A348054, A348547.

Programs

  • Mathematica
    a={}; For[n=0, n<=100, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[a] || Mod[10*n+9, 10*k+7]==0 && Mod[(10*n+9)/(10*k+7), 10]==7 && 10*n+9>Max[a], AppendTo[a, 10*n+9]]]]; a
  • PARI
    isok(m) = ((m%10) == 9) && sumdiv(m, d, (d % 10) == (m/d % 10)); \\ Michel Marcus, Oct 22 2021
    
  • Python
    def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) | set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
    print(aupto(999)) # Michael S. Branicky, Oct 22 2021

Formula

Lim_{n->infinity} a(n)/a(n-1) = 1.
Showing 1-2 of 2 results.