A324381 Number of nonzero digits when the n-th highly composite number is written in primorial base: a(n) = A267263(A002182(n)).
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 4
Offset: 1
Keywords
Examples
For n=12, A002182(12) = 240, which is written as "11000" in primorial base (A049345) because 240 = 1*A002110(4) + 1*A002110(3) = 210+30, thus a(12) = 2, as there are two nonzero digits. For n=18, A002182(18) = 2520 = "110000" in primorial base because 2520 = 1*A002110(5) + 1*A002110(4) = 2310+210, thus a(18) = 2. For n=26, A002182(26) = 45360 = "1670000" in primorial base because 45360 = 1*A002110(6) + 6*A002110(5) + 7*A002110(4), thus a(26) = 3, as there are three nonzero digits.