cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A324403 a(n) = Product_{i=1..n, j=1..n} (i^2 + j^2).

Original entry on oeis.org

1, 2, 400, 121680000, 281324160000000000, 15539794609114833408000000000000, 49933566483104048708063697937367040000000000000000, 19323883089768863178599626514889213871887405416448000000000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 26 2019

Keywords

Comments

Next term is too long to be included.

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^2+j^2, i=1..n), j=1..n):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i^2+j^2, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
  • PARI
    a(n) = prod(i=1, n, prod(j=1, n, i^2+j^2)); \\ Michel Marcus, Feb 27 2019
    
  • Python
    from math import prod, factorial
    def A324403(n): return (prod(i**2+j**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n))**2<Chai Wah Wu, Nov 22 2023

Formula

a(n) ~ 2^(n*(n+1) - 3/4) * exp(Pi*n*(n+1)/2 - 3*n^2 + Pi/12) * n^(2*n^2 - 1/2) / (Pi^(1/4) * Gamma(3/4)).
a(n) = 2*n^2*a(n-1)*Product_{i=1..n-1} (n^2 + i^2)^2. - Chai Wah Wu, Feb 26 2019
For n>0, a(n)/a(n-1) = A272244(n)^2 / (2*n^6). - Vaclav Kotesovec, Dec 02 2023
a(n) = exp(2*Integral_{x=0..oo} (n^2/(x*exp(x)) - (cosh(n*x) - cos(n*x))/(x*exp((n + 1)*x)*(cosh(x) - cos(x)))) dx)/2^(n^2). - Velin Yanev, Jun 30 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A367958 a(n) = Product_{i=1..n, j=1..n} (i + 5*j).

Original entry on oeis.org

1, 6, 5544, 2822916096, 1723467782592331776, 2210440498434925488635904000000, 9234659938893939743399592700454853672960000000, 180150216814109052335771891722360520401032374209013927116800000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2023

Keywords

Comments

In general, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^(1/d) * (Product_{j=1..d} Gamma(j/d)^(j/d)) * (d+1)^((d/2 + 1 + 1/(2*d))*n*(n+1) + (d+1)^2/(12*d) + 1/12) * n^(n^2 - d/12 - 1/4 - 1/(12*d)) / ((2*Pi)^((d+1)/4) * exp(3*n^2/2 + 1/(12*d)) * d^((n*(d*n + (d+1)))/2 - 1/(12*d))), where A = A074962 is the Glaisher-Kinkelin constant.
Equivalently, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^d * (Product_{j=1..d} BarnesG(j/d)) * (2*Pi)^((d-3)/4) * (d+1)^((d + (d+1)^2*(6*n*(n+1) + 1)) / (12*d)) * n^(n^2 - 1/4 - 1/(12*d) - d/12) / (d^((n+1)*(d*n + 1)/2) * exp(3*n^2/2 + d/12)).

Crossrefs

Cf. A079478 (d=1), A324402 (d=2), A367956 (d=3), A367957 (d=4).

Programs

  • Maple
    a:= n-> mul(mul(i+5*j, i=1..n), j=1..n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Dec 06 2023
  • Mathematica
    Table[Product[i + 5*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]

Formula

a(n) ~ A^(1/5) * (1 + sqrt(5))^(1/10) * 2^(18*n*(n+1)/5 + 29/60) * 3^(18*n*(n+1)/5 + 41/60) * n^(n^2 - 41/60) / (Pi^(1/10) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) * 5^(n*(5*n+6)/2 + 1/3) * exp(3*n^2/2 + 1/60)), where A = A074962 is the Glaisher-Kinkelin constant.

A367956 a(n) = Product_{i=1..n, j=1..n} (i + 3*j).

Original entry on oeis.org

1, 4, 1120, 79833600, 3173289799680000, 123650071173117090201600000, 7337799401269093351612002462597120000000, 951792703318385182295191545713146608287219712000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i + 3*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]

Formula

a(n) ~ A^(1/3) * 2^(16*n*(n+1)/3 + 13/18) * n^(n^2 - 19/36) / (Pi^(1/3) * Gamma(1/3)^(1/3) * 3^(n*(3*n+4)/2 + 11/36) * exp(3*n^2/2 + 1/36)), where A = A074962 is the Glaisher-Kinkelin constant.

A367957 a(n) = Product_{i=1..n, j=1..n} (i + 4*j).

Original entry on oeis.org

1, 5, 2700, 567567000, 101370917007360000, 26995322179162164731904000000, 16635639072295355604762223305031680000000000, 34026881962001914598329145027742925521204742717440000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i + 4*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]

Formula

a(n) ~ A^(1/4) * 5^(25*n*(n+1)/8 + 29/48) * n^(n^2 - 29/48) / (Pi^(1/4) * Gamma(1/4)^(1/2) * 2^(n*(4*n+5) + 5/6) * exp(3*n^2/2 + 1/48)), where A = A074962 is the Glaisher-Kinkelin constant.

A368068 a(n) = Product_{i=1..n, j=1..n} (2*i^2 + 5*i*j + 2*j^2).

Original entry on oeis.org

1, 9, 129600, 40327580160000, 1311346674278439321600000000, 13821139470331790817454891043295068160000000000, 114180111981355345833797461507302737916551512227408406118400000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[2*i^2 + 5*i*j + 2*j^2, {i, 1, n}, {j, 1, n}], {n, 0, 7}]

Formula

a(n) = Product_{i=1..n, j=1..n} (i + 2*j) * (2*i + j).
a(n) = A324402(n)^2.
a(n) ~ A * 3^(9*n*(n+1)/2 + 11/12) * n^(2*n^2 - 11/12) / (Pi * 2^(2*n^2 + 3*n + 17/12) * exp(3*n^2 + 1/12)), where A is the Glaisher-Kinkelin constant A074962.
Showing 1-5 of 5 results.