A324457 Numbers m > 1 such that every prime divisor p of m satisfies s_p(m) >= p.
24, 45, 48, 72, 96, 120, 144, 189, 192, 216, 224, 225, 231, 240, 288, 315, 320, 325, 336, 352, 360, 384, 405, 432, 450, 480, 525, 540, 560, 561, 567, 576, 594, 600, 637, 648, 672, 704, 720, 768, 792, 819, 825, 832, 850, 864, 891, 896, 924, 945, 960, 975, 980
Offset: 1
Examples
The number 45 has the prime factors 3 and 5. Since s_3(45) = 3 and s_5(45) = 5, 45 is a member.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..477 from Bernd C. Kellner)
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), Article #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), Article #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Crossrefs
Programs
-
Mathematica
s[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; f[n_] := AllTrue[Transpose[FactorInteger[n]][[1]], s[n, #] >= # &]; Select[Range[10^4], f[#] &]
Comments