cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A324152 a(0)=1; for n>0, a(n) = (3/((n+1)*(n+2)*(n+3))) * multinomial(4*n;n,n,n,n).

Original entry on oeis.org

1, 3, 126, 9240, 900900, 104756652, 13742520792, 1968826448160, 301700280152700, 48756255150603000, 8226155369009738160, 1438285479229504301760, 259131100507849025033760, 47897087290614993606462000, 9050997011303368719799740000
Offset: 0

Views

Author

Keywords

Comments

It is conjectured that a(n) is always an integer.
If all terms except the first are doubled, we get A324478, which IS known to be integral.

Crossrefs

Cf. A000108, A324151, A324465 (exponent of 2), A324467, A324478.

Programs

  • Magma
    [1] cat [n le 1 select 3 else Self(n-1)*4*(4*n-3)*(4*n-2)*(4*n-1)/((n)^2*(n+3)): n in [1..20]]; // Vincenzo Librandi, Mar 11 2019
  • Mathematica
    c[m_, n_] := m Product[1/(n + i), {i, m}] (Multinomial @@ ConstantArray[n, m + 1]); {1}~Join~Array[c[3, #] &, 14] (* Michael De Vlieger, Mar 01 2019 *)
    Flatten[{1, Table[3*(4*n)! / ((n!)^3 * (n+3)!), {n, 1, 15}]}] (* Vaclav Kotesovec, Jul 21 2019 *)

Formula

a(n+1) = a(n)*4*(4*n+1)*(4*n+2)*(4*n+3)/((n+1)^2*(n+4)) for n>0.
From Vaclav Kotesovec, Jul 21 2019: (Start)
For n>0, a(n) = 3*(4*n)! / ((n!)^3 * (n+3)!).
a(n) ~ 3 * 2^(8*n - 1/2) / (Pi^(3/2) * n^(9/2)). (End)

A324465 Exponent of highest power of 2 that divides A324152(n).

Original entry on oeis.org

0, 0, 1, 3, 2, 2, 3, 5, 2, 3, 4, 6, 5, 4, 5, 7, 2, 3, 4, 6, 5, 5, 6, 8, 5, 6, 7, 9, 8, 6, 7, 9, 2, 3, 4, 6, 5, 5, 6, 8, 5, 6, 7, 9, 8, 7, 8, 10, 5, 6, 7, 9, 8, 8, 9, 11, 8, 9, 10, 12, 11, 8, 9, 11, 2, 3, 4, 6, 5, 5, 6, 8, 5, 6, 7, 9, 8, 7, 8, 10, 5, 6, 7, 9
Offset: 0

Views

Author

N. J. A. Sloane, Mar 01 2019

Keywords

Comments

First occurrence of k=0,1,2,...: 0, 2, 4, 3, 10, 7, 11, 15, 23, 27, 47, 55, 59, 111, 119, 123, 239, 247, 251, 495, 503, 507, 1007, 1015, 1019, 2031, 2039, 2043, 4079, 4087, 4091, 8175, 8183, 8187, 16367, 16375, 16379, 32751, 32759, 32763, 65519, 65527, 65531, 131055, 131063, 131067, ..., . Robert G. Wilson v, Mar 01 2019

Crossrefs

Cf. A000120 (binary weight), A007814, A324152, A324467.

Programs

  • Mathematica
    f[n_] := IntegerExponent[(3/((n + 1)(n + 2)(n + 3)))*Multinomial[n, n, n, n], 2]; f[0] = 0; Array[f, 84, 0] (* Robert G. Wilson v, Mar 01 2019 *)
  • PARI
    a(n) = 3*hammingweight(n) - valuation((n+1)*(n+2)*(n+3), 2); \\ Michel Marcus, Jul 10 2022

Formula

a(n) = 3*wt(n) - (2-adic valuation of (n+1)*(n+2)*(n+3))
= 3*A000120(n) - (A007814(n+1)+A007814(n+2)+A007814(n+3)).
E.g. if n = 14 = 1110_2, with weight 3, we get a(14) = 3*3 - 2-adic valuation of 15*16*17 = 9 - 4 = 5.

A324466 Exponent of highest power of 2 that divides multinomial(3*n;n,n,n).

Original entry on oeis.org

0, 1, 1, 4, 1, 2, 4, 6, 1, 2, 2, 7, 4, 5, 6, 8, 1, 2, 2, 5, 2, 3, 7, 9, 4, 5, 5, 9, 6, 7, 8, 10, 1, 2, 2, 5, 2, 3, 5, 7, 2, 3, 3, 10, 7, 8, 9, 11, 4, 5, 5, 8, 5, 6, 9, 11, 6, 7, 7, 11, 8, 9, 10, 12, 1, 2, 2, 5, 2, 3, 5, 7, 2, 3, 3, 8, 5, 6, 7, 9, 2, 3, 3, 6, 3, 4, 10, 12, 7, 8, 8
Offset: 0

Views

Author

N. J. A. Sloane, Mar 02 2019

Keywords

Crossrefs

Cf. A000120 (analog for binomial coefficients), A006480, A007814, A324467.

Programs

  • Magma
    [Valuation(Factorial(3*n)/Factorial(n)^3, 2): n in [0..100]]; // Vincenzo Librandi, Mar 10 2019
    
  • Maple
    [seq(padic[ordp](combinat:-multinomial(3*n,n,n,n),2),n=0..128)];
    # alternative:
    f:= proc(n) local r,t;
      t:= 0; r:= 3*n;
      while r > 1 do t:= t + floor(r) - 3*floor(r/3); r:= r/2; od;
      t
    end proc:
    map(f, [$0..200]); # Robert Israel, Mar 03 2019
  • Mathematica
    Table[IntegerExponent[(3 n)!/n!^3, 2], {n, 0, 100}] (* Vincenzo Librandi Mar 10 2019 *)
  • PARI
    a(n) = valuation((3*n)!/n!^3, 2); \\ Michel Marcus, Mar 04 2019
    
  • Python
    from math import factorial
    def A324466(n): return (~(m:=factorial(3*n)//factorial(n)**3)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022

Formula

a(2*n) = a(n). - Robert Israel, Mar 04 2019
From Amiram Eldar, Feb 21 2021: (Start)
a(n) = A007814(A006480(n)).
a(n) = 3*A000120(n) - A000120(3*n). (End)

A324469 Exponent of highest power of 3 that divides multinomial(4*n;n,n,n,n).

Original entry on oeis.org

0, 1, 2, 1, 2, 4, 2, 5, 6, 1, 2, 3, 2, 3, 6, 4, 6, 7, 2, 3, 4, 5, 6, 8, 6, 8, 9, 1, 2, 3, 2, 3, 5, 3, 6, 7, 2, 3, 4, 3, 4, 8, 6, 8, 9, 4, 5, 6, 6, 7, 9, 7, 9, 10, 2, 3, 4, 3, 4, 6, 4, 9, 10, 5, 6, 7, 6, 7, 10, 8, 10, 11, 6, 7, 8, 8, 9, 11, 9, 11, 12, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Mar 03 2019

Keywords

Crossrefs

Analogs for binomial and trinomials: A000989, A053735. See also A324467.
Cf. A007949 (3-adic valuation of n), A008977.

Programs

  • Maple
    [seq(padic[ordp](combinat[multinomial](4*n, n$4), 3), n=0..128)];
  • Mathematica
    s[n_] := Plus @@ IntegerDigits[n, 3]; a[n_] := 2*s[n] - s[4*n]/2; Array[a, 100, 0] (* Amiram Eldar, Feb 21 2021 *)

Formula

a(n) = 2*A000989(n) + A000989(2*n). - Charlie Neder, Mar 09 2019
From Amiram Eldar, Feb 21 2021: (Start)
a(n) = A007949(A008977(n)).
a(n) = 2*A053735(n) - A053735(4*n)/2. (End)
Showing 1-4 of 4 results.