cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A324505 a(n) = numerator of Sum_{d|n} (d/pod(d)) where pod(k) = the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 2, 5, 2, 19, 2, 21, 7, 31, 2, 529, 2, 43, 46, 169, 2, 1135, 2, 1441, 64, 67, 2, 52513, 11, 79, 64, 2801, 2, 117001, 2, 2705, 100, 103, 106, 1122553, 2, 115, 118, 238561, 2, 317521, 2, 6865, 6886, 139, 2, 20247937, 15, 8251, 154, 9569, 2, 557443, 166
Offset: 1

Views

Author

Jaroslav Krizek, Mar 03 2019

Keywords

Comments

Sum_{d|n} (d/pod(d)) >= 1 for all n >= 1.
Sum_{d|n} (d/pod(d)) = 2 iff n = primes (A000040).

Examples

			Sum_{d|n} (d/pod(d)) for n >= 1: 1, 2, 2, 5/2, 2, 19/6, 2, 21/8, 7/3, 31/10, 2, 529/144, 2, 43/14, 46/15, 169/64, ...
For n=4; Sum_{d|4} (d/pod(d)) = 1/pod(1) + 2/pod(2) + 4/pod(4) = 1/1 + 2/2 + 4/8 = 5/2; a(4) = 5.
		

Crossrefs

Cf. A000040, A007955, A007956 (denominators).

Programs

  • Magma
    [Numerator(&+[d / &*[c: c in Divisors(d)]: d in Divisors(n)]): n in [1..100]];
    
  • Mathematica
    Table[Numerator[Sum[k/Product[j, {j, Divisors[k]}], {k, Divisors[n]}]], {n, 1, 60}] (* G. C. Greubel, Mar 04 2019 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2));
    A324505(n) = numerator(sumdiv(n,d,(d/A007955(d)))); \\ Antti Karttunen, Jan 27 2025
  • Sage
    [sum(k/product(j for j in k.divisors()) for k in n.divisors()).numerator() for n in (1..60)] # G. C. Greubel, Mar 04 2019
    

Formula

a(p) = 2 for p = primes.