A324528 a(n) = lcm(tau(n), pod(n)) where tau(k) = the number of divisors of k (A000005) and pod(n) = the product of divisors of k (A007955).
1, 2, 6, 24, 10, 36, 14, 64, 27, 100, 22, 1728, 26, 196, 900, 5120, 34, 5832, 38, 24000, 1764, 484, 46, 331776, 375, 676, 2916, 65856, 58, 810000, 62, 98304, 4356, 1156, 4900, 10077696, 74, 1444, 6084, 2560000, 82, 3111696, 86, 255552, 182250, 2116, 94
Offset: 1
Keywords
Examples
For n=4: a(4) = lcm(tau(4), pod(4)) = lcm(3, 8) = 24.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[LCM(NumberOfDivisors(n), &*[d: d in Divisors(n)]): n in [1.. 100]]
-
Mathematica
Table[LCM[DivisorSigma[0,n],Times@@Divisors[n]],{n,50}] (* Harvey P. Dale, Aug 14 2019 *)
-
PARI
a(n) = my(d=divisors(n)); lcm(vecprod(d), #d); \\ Michel Marcus, Mar 05 2019