cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A324649 Numbers k such that A318458(k) (bitwise-AND of k and sigma(k)-k) is equal to k.

Original entry on oeis.org

6, 20, 28, 36, 66, 72, 88, 100, 104, 114, 132, 150, 240, 258, 264, 272, 280, 304, 354, 368, 392, 402, 464, 496, 498, 516, 550, 552, 642, 644, 680, 708, 748, 770, 774, 784, 786, 834, 836, 840, 860, 978, 1026, 1032, 1040, 1044, 1056, 1062, 1064, 1068, 1074, 1092, 1104, 1120, 1184, 1232, 1266, 1312, 1362, 1376, 1410, 1504
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Positions of zeros in A324648. Fixed points of A318458, also positions of the records in the latter.
Intersection with A324652 gives A324643.
The odd terms are: 7425, 76545, 92565, ... (A324897).

Crossrefs

Cf. A000396, A324643, A324897, A324898 (subsequences).

Programs

  • Mathematica
    Select[Range@ 1600, BitAnd[#, DivisorSigma[1, #] - #] == # &] (* Michael De Vlieger, Apr 21 2019, after Vincenzo Librandi at A318458 *)
  • PARI
    for(n=1,oo,if(bitand(n,sigma(n)-n)==n, print1(n, ", ")));

A324658 a(n) = n - A324659(n), where A324659(n) is half of bitwise-AND of 2*n and sigma(n).

Original entry on oeis.org

1, 2, 1, 4, 4, 0, 3, 8, 9, 2, 9, 0, 8, 2, 3, 16, 16, 0, 17, 0, 5, 4, 19, 0, 16, 10, 11, 0, 16, 26, 15, 32, 33, 32, 35, 0, 36, 32, 35, 0, 40, 10, 41, 4, 8, 10, 39, 0, 33, 16, 19, 4, 36, 2, 19, 0, 17, 18, 33, 40, 32, 14, 11, 64, 65, 2, 65, 64, 69, 6, 67, 8, 72, 66, 65, 8, 77, 10, 71, 0, 65, 64, 81, 4, 65, 20, 67, 0, 80
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Crossrefs

Cf. A324652 (positions of zeros).

Programs

  • Mathematica
    Array[# - BitAnd[2*#, DivisorSigma[1, #]]/2 &, 100] (* Paolo Xausa, Mar 13 2024 *)
  • PARI
    A324658(n) = (n-(bitand(2*n,sigma(n))/2));

Formula

a(n) = n - A324659(n) = n - A318468(n)/2 = n - ((2*n AND sigma(n))/2).

A324659 a(n) = (1/2)*A318468(n), where A318468(n) is bitwise-AND of 2*n and sigma(n).

Original entry on oeis.org

0, 0, 2, 0, 1, 6, 4, 0, 0, 8, 2, 12, 5, 12, 12, 0, 1, 18, 2, 20, 16, 18, 4, 24, 9, 16, 16, 28, 13, 4, 16, 0, 0, 2, 0, 36, 1, 6, 4, 40, 1, 32, 2, 40, 37, 36, 8, 48, 16, 34, 32, 48, 17, 52, 36, 56, 40, 40, 26, 20, 29, 48, 52, 0, 0, 64, 2, 4, 0, 64, 4, 64, 1, 8, 10, 68, 0, 68, 8, 80, 16, 18, 2, 80, 20, 66, 20, 88, 9, 80
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Crossrefs

Cf. A324652 (fixed points).

Programs

  • Mathematica
    Array[BitAnd[2*#, DivisorSigma[1, #]]/2 &, 100] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    A324659(n) = (bitand(2*n,sigma(n))/2);

Formula

a(n) = A318468(n)/2.
a(n) = n - A324658(n).
Showing 1-3 of 3 results.