cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A324722 Numbers k such that A324658(A156552(k)) is zero.

Original entry on oeis.org

9, 21, 25, 35, 49, 55, 77, 95, 121, 125, 133, 143, 169, 185, 203, 209, 221, 265, 289, 299, 301, 319, 323, 343, 361, 371, 377, 413, 427, 437, 445, 451, 473, 481, 493, 497, 511, 527, 529, 531, 539, 553, 559, 583, 589, 605, 611, 623, 629, 667, 679, 689, 703, 707, 737, 763, 767, 779, 791, 793, 799, 805, 817, 841, 845, 847, 851, 869, 871, 899, 901
Offset: 1

Views

Author

Antti Karttunen, Mar 15 2019

Keywords

Comments

First even term is A005940(1+A324647(1)) = A005940(1+1116225) = 1912898. - Typo corrected by Antti Karttunen, Jul 21 2021

Crossrefs

Positions of zeros in A324716.

Programs

A324652 Numbers k such that A318468(k) (bitwise-AND of 2*k and sigma(k)) is equal to 2*k.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 36, 40, 48, 56, 80, 88, 96, 100, 104, 112, 160, 176, 192, 196, 200, 204, 208, 220, 224, 260, 264, 272, 304, 320, 336, 352, 368, 384, 392, 416, 448, 464, 496, 544, 550, 580, 608, 640, 648, 650, 672, 704, 736, 768, 784, 832, 896, 928, 992, 1032, 1040, 1044, 1056, 1060, 1068, 1088, 1104, 1120, 1184, 1216
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Comments

Positions of zeros in A324658, fixed points of A324659.
Intersection with A324649 gives A324643.
Intersection with A324726 gives A000396.
In the range 1..2^32 there are only 22 odd terms. See A324647.

Crossrefs

Some subsequences: A000396, A324643, A324647 (the odd terms).

Programs

  • Mathematica
    Select[Range[2000], 2*# == BitAnd[2*#, DivisorSigma[1, #]] &] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    for(n=1,oo,if((n+n)==bitand(2*n,sigma(n)), print1(n, ", ")))

A324648 a(n) = n - A318458(n), where A318458(n) is bitwise-AND of n and the sum of proper divisors of n (sigma(n)-n).

Original entry on oeis.org

1, 2, 2, 4, 4, 0, 6, 8, 9, 2, 10, 12, 12, 4, 6, 16, 16, 2, 18, 0, 20, 16, 22, 24, 25, 10, 18, 0, 28, 20, 30, 32, 32, 34, 34, 0, 36, 32, 38, 8, 40, 8, 42, 4, 12, 36, 46, 48, 49, 16, 34, 16, 52, 52, 38, 56, 40, 26, 58, 16, 60, 28, 22, 64, 64, 0, 66, 68, 68, 4, 70, 0, 72, 66, 74, 12, 76, 4, 78, 16, 81, 82, 82, 80, 64, 80, 86, 0, 88
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Crossrefs

Cf. A001065, A004198, A318458, A324658, A324649 (positions of zeros).

Programs

  • Mathematica
    Array[# - BitAnd[#, DivisorSigma[1, #] - #] &, 100] (* Paolo Xausa, Mar 12 2024 *)
  • PARI
    A318458(n) = bitand(n,sigma(n)-n);
    A324648(n) = (n-A318458(n));
    
  • PARI
    A324648(n) = (n-bitand(n,sigma(n)-n));

Formula

a(n) = n - A318458(n).

A324659 a(n) = (1/2)*A318468(n), where A318468(n) is bitwise-AND of 2*n and sigma(n).

Original entry on oeis.org

0, 0, 2, 0, 1, 6, 4, 0, 0, 8, 2, 12, 5, 12, 12, 0, 1, 18, 2, 20, 16, 18, 4, 24, 9, 16, 16, 28, 13, 4, 16, 0, 0, 2, 0, 36, 1, 6, 4, 40, 1, 32, 2, 40, 37, 36, 8, 48, 16, 34, 32, 48, 17, 52, 36, 56, 40, 40, 26, 20, 29, 48, 52, 0, 0, 64, 2, 4, 0, 64, 4, 64, 1, 8, 10, 68, 0, 68, 8, 80, 16, 18, 2, 80, 20, 66, 20, 88, 9, 80
Offset: 1

Views

Author

Antti Karttunen, Mar 14 2019

Keywords

Crossrefs

Cf. A324652 (fixed points).

Programs

  • Mathematica
    Array[BitAnd[2*#, DivisorSigma[1, #]]/2 &, 100] (* Paolo Xausa, Mar 11 2024 *)
  • PARI
    A324659(n) = (bitand(2*n,sigma(n))/2);

Formula

a(n) = A318468(n)/2.
a(n) = n - A324658(n).
Showing 1-4 of 4 results.