A324738 Number of subsets of {1...n} containing no element > 1 whose prime indices all belong to the subset.
1, 2, 3, 5, 8, 13, 26, 42, 72, 120, 232, 376, 752, 1128, 2256, 4512, 8256, 13632, 27264, 42048, 82944, 158976, 313344, 497664, 995328, 1700352, 3350016, 5815296, 11630592, 17491968, 34983936, 56954880, 108933120, 210788352, 418258944, 804667392, 1609334784
Offset: 0
Keywords
Examples
The a(0) = 1 through a(6) = 26 subsets: {} {} {} {} {} {} {} {1} {1} {1} {1} {1} {1} {2} {2} {2} {2} {2} {3} {3} {3} {3} {1,3} {4} {4} {4} {1,3} {5} {5} {2,4} {1,3} {6} {3,4} {1,5} {1,3} {2,4} {1,5} {2,5} {1,6} {3,4} {2,4} {4,5} {2,5} {2,4,5} {2,6} {3,4} {3,6} {4,5} {4,6} {5,6} {1,3,6} {1,5,6} {2,4,5} {2,4,6} {2,5,6} {3,4,6} {4,5,6} {2,4,5,6}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
Crossrefs
The maximal case is A324744. The case of subsets of {2...n} is A324739. The strict integer partition version is A324749. The integer partition version is A324754. The Heinz number version is A324759. An infinite version is A324694.
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,10}]
-
PARI
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))} a(n)={my(p=vector(n,k,if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i])); ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<
Andrew Howroyd, Aug 16 2019
Extensions
Terms a(21) and beyond from Andrew Howroyd, Aug 16 2019
Comments